

Metodi empirici

Basati su una semplice comparazione degli alimenti in funzione delle risposte produttive che si possono ottenere sostituendo un alimento con un altro in condizioni controllate ("valore di trasformazione")

Metodi scientifici

Volti a determinare il reale contenuto energetico degli alimenti attraverso la quantificazione delle diverse perdite di energetiche e/o la misura delle ritenzioni energetiche nei prodotti (si basano su studi del ricambio materiale e energetico)

PRIMI TENTATIVI

Taher e Einhoff, 1810 → "equivalenti in fieno"
 Quantità di alimenti in grado di sostituire 100 kg
 di fieno "normale"
 (80% graminacee, 18% leguminose, 2% essenze
 vegetali)

VALORE NUTRITIVO (V.N.): sistemi di espressione nei ruminanti

METODO SCANDINAVO o delle UF

 Fijord (D) e Hansson (S) 1890-1910
 prove di alimentazione condotte su vacche da latte:

dieta C = foraggi + orzo dieta S = sostituzione orzo con altri alimenti

 L'unità di misura adottata fu l'UF scandinava che corrispondeva al contenuto di energia netta latte di 1 kg di orzo (3 litri di latte al 3.4%)
 Es. 1 kg di fieno → 1,2 litri di latte (0.4 UF)

METODO KELLNER ("unità amido, UA")

- Kellner (D) 1905. Prove di calorimetria indiretta
 Misura della quantità di grasso depositato da bovini da carne (maschi adulti, castrati)
 - 1 kg di amido = 248 g di grasso
 - 1 kg di proteine = 235 g di grasso
 - 1 kg di grassi (semi oleosi)= 598 g grasso
 - Si stabilirono così i coefficienti adipogenetici delle sostanze nutritive prendendo come unità di misura quello di 1 kg di amido

VALORE NUTRITIVO (V.N.): sistemi di espressione nei ruminanti

METODO KELLNER ("unità amido, UA") Coefficienti adipogenetici

Sost.nutritiva digerib. somm.	Grasso g	Coeff.adip.
Amido	248	1.00
Cellulosa	253	1.00
Saccarosio	188	0.78
Proteina	235	0.94
Lipidi da semi oleosi	598	2.41
Lipidi da cereali	526	2.12
Lipidi da foraggi	474	1.91

METODO KELLNER ("unità amido, UA")

- E' possibile quindi calcolare le U.A. teoriche di qualsiasi alimento
 - *UA teoriche = [1,00 x (EId+FGd) + 0.94 x PGd + 1.91 x EEd]*
- Le UA teoriche erano superiori a quelle ottenibili in realtà: poiché questa sovrastima era tanto maggiore quanto più alto era il contenuto in fibra, Kellner introdusse un fattore di correzione per la fibra

VALORE NUTRITIVO (V.N.): sistemi di espressione nei ruminanti

METODO KELLNER ("unità amido, UA") Correzione per la fibra

Contenuto in CG (% t.q.)	Detrazione (UA/q) per ogni punto % di CG
>16	0.58
14.1-16	0.53
12.1-14	0.48
10.1-12	0.43
8.1-10	0.38
6.1-8	0.34
4.1-6	0.31
<4.1	0.29

Cont. METODO KELLNER

- Le U.A. reali si ottengono dopo la detrazione per la fibra
- Le U.A. reali esprimono il contenuto di un alimento destinato agli animali in accrescimento ingrasso (tende a sottostimare il valore energetico dei foraggi)
- Per trasformare le UA in UFSc (Sistema scandinavo):
 UFSc = 1.43 x U.A.

VALORE NUTRITIVO (V.N.): sistemi di espressione nei ruminanti

SISTEMA FRANCESE (UFC e UFL)

Si parte dall'Energia Lorda

EL(MJ/kg ss) = $17.3 + 0.0617xPG + 0.2193xEE + 0.0387xCG + 0.1867xCeneri + \Delta$

dove PG,EE,CG,Ceneri sono espresse in % ss Δ =fattore di correzione diverso per i diversi tipi di alimenti

SISTEMA FRANCESE (UFC e UFL)

Si stima l'<u>Energia Digeribile</u> anche a partire dalla digeribilità della sostanza organica (OMd, %):

dE(%) = OMd -3.94 + 0.104xPG + 0.149xEE + 0.022xNDF + 0.244xCeneri

dove PG, EE, NDF, Ceneri sono espresse in % ss Δ =fattore di correzione diverso per i diversi tipi di alimenti

ED (MJ/kg ss) = EL x dE

VALORE NUTRITIVO (V.N.): sistemi di espressione nei ruminanti

SISTEMA FRANCESE (UFC e UFL)

Si calcola l'<u>Energia Metabolizzabile</u> EM (MJ/kg ss) = ED x EM/ED dove:

 $EM/ED = 86.38 - 0.099 \times CGo - 0.196 \times Pgo$ dove CGo e PGo sono CG e PG espresse in % sostanza organica

Calcolo EN

dipende dall'efficienza di utilizzazione dell'EM che a sua volta dipende da q (metabolizzabilità dell'energia)

SISTEMA FRANCESE (UFC e UFL)

Per stimare l'Energia Netta

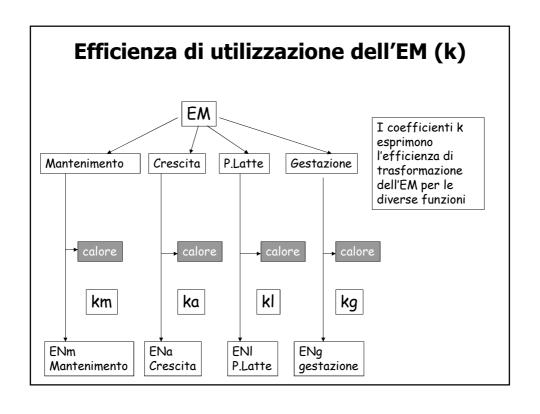
EN dipende dall'efficienza di utilizzazione dell'EM (k) che a sua volta dipende dalla metabolizzabilità dell'energia (q)

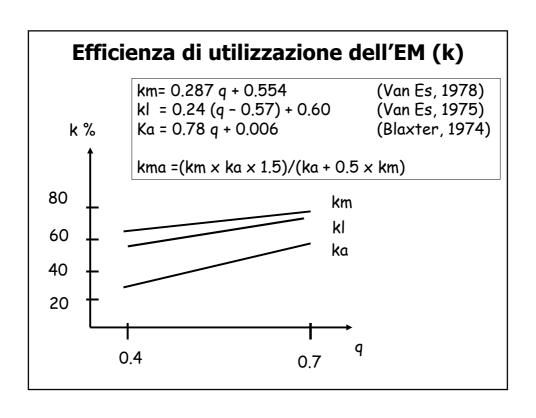
Il concetto di <u>metabolizzabilità dell'energia</u> esprime quanta parte dell'energia lorda sarà presente nei principi nutritivi assorbiti al netto delle diverse perdite (fecali, gas, urine)

q = EM/EL

Nei ruminanti q varia da 0.4 a 0.7 (più basso nei foraggi, più elevato nei concentrati). Per tutti questi alimenti il valore di EL è piuttosto costante, quindi q varia con la stessa intensità con cui varia EM

VALORE NUTRITIVO (V.N.): sistemi di espressione nei ruminanti


SISTEMA FRANCESE (UFC e UFL)


Per stimare l'Energia Netta

EN dipende dall'efficienza di utilizzazione dell'EM (k) che a sua volta dipende dalla metabolizzabilità dell'energia (q)

L'<u>efficienza di utilizzazione</u> dell'EM (k) varia in funzione di come viene usata dall'animale la stessa EM:

- Mantenimento
- Produzioni
- Variazioni di stato corporeo (accrescimento e ingrasso)
- Produzione di latte
- Riproduzione (lattazione, gravidanza)
- Lavoro

SISTEMA FRANCESE (UFC e UFL)

Si possono calcolare quindi diversi valori di EN

Poiché i valori di k variano in funzione della destinazione metabolica dell'energia e della metabolizzabilità è evidente che per uno stesso alimento il contenuto di EN può essere espresso come:

EN mantenimento = EM* km EN latte = EM* kl EN accrescimento = EM*ka EN gestazione = EM*kg

Dal punto di vista pratico:

Nella produzione del latte si utilizza il concetto di EN di lattazione utilizzando

il coefficiente kl ENI= EM*kl

Nella produzione della carne si utilizza un coefficiente kma che media i

coefficienti km e ka ENma = EM* kma

VALORE NUTRITIVO (V.N.): sistemi di espressione nei ruminanti

SISTEMA FRANCESE (UFC e UFL)

I valori di EN si esprimono in UFL e UFC

ENI = kl X EM \rightarrow UFL =ENI/7.113 (MJ) ENma = kma X EM \rightarrow UFC =ENma/7.615 (MJ)

L'UFL e UFC rappresentano la quantità di energia <u>netta</u> apportata da 1 kg di orzo di riferimento (standard barley)

SISTEMA TDN ("total digestible nutrients")

- Deriva dal metodo di Wolff e Lehmann (D, 1865) e di Forbes (USA, 1930)
 - → "potere energetico degli alimenti"
 - 1 kg di CHO dig. →4100 kcal
 - 1 kg di prot. dig. →4100 kcal
 - 1 kg di fibra dig. →4100 kcal
 - 1 kg di lipidi dig. \rightarrow 9300 kcal (2.25 x)

VALORE NUTRITIVO (V.N.): sistemi di espressione nei ruminanti

SISTEMA dei TDN ("Total Digestible Nutrients")

Forbes (USA) 1933
 Calcolo dei TDN:
 TDN= PGd + EId + FGd + (2.25 x EEd)
 NRC (2001) Nutrient requirements of Dairy Cattle
 TDN= PGd + NFCd + NDFd + (2.25 x EEd)-7

Si passa così alla EM presente in 1 kg di TDN

1 kg di TDN → 3650 kcal

Per il calcolo della EN si utilizzano dei k costanti:

ENm = EMx0.76 ENI= EMx069 ENa =EMx0.58