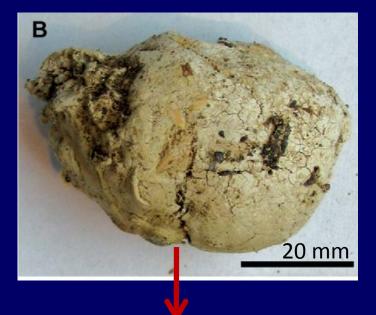
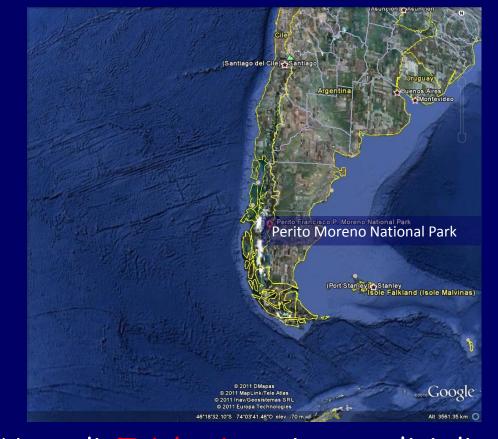

Ascaridiosi, ancylostomosi e trichurosi




Ascaridi, Ancilostomi e Trichuridi...

... un problema antico? ...

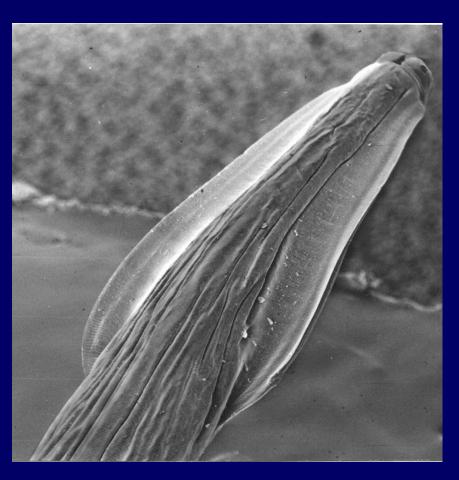
Uova di *Trichuris* sp. in coproliti di canidi e felidi Uova di *Toxascaris* sp. e *Uncinaria* sp. in coproliti di canidi

(Olocene, 6540 ± 110 anni fa ...).

Fugassa et al., 2006; 2009

Grotta del Fossellone Grotta Guattari

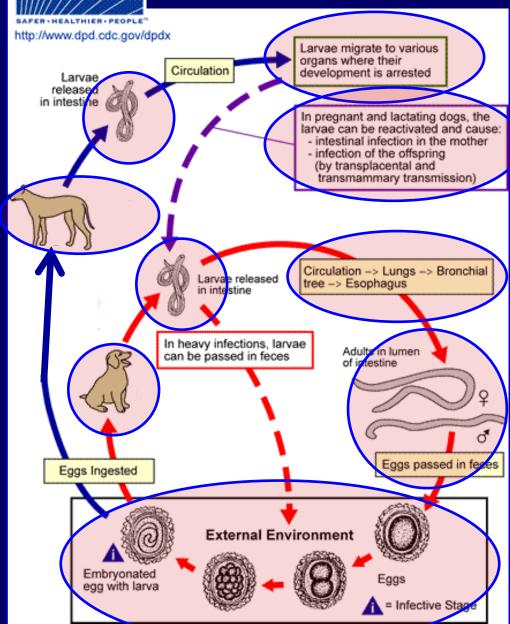
Tratto e modificato da: http://www.thegreenchildren.org/tgcf/


Larve (forse di <mark>ascaridi)</mark> in coproliti di canidi (Pleistocene, > 30.000 anni fa ...).

Ferreira et al, 1993

... un problema attuale !!!

ASCARIDI


Toxocara canis (Werner, 1782)

maschio 10 cm femmina 18 cm

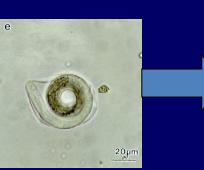
CDC Ciclo Toxocara canis

CANI DI ETA' < 3 MESI

CANI DI ETA' > 3 MESI

TRANSPLACENTARE TRANSMAMMARIA

Toxocara canis


Sviluppo L3 nell'uovo:

Periodo di prepatenza:

- ingestione uova larvate
- · ingestione ospite paratenico
- · infestazione transmammaria

Ingestione L3 (latte) od ospiti paratenici = no migrazione

· infestazione prenatale: 3 sett.

4 - 5 sett.

T. cati (Schrank, 1788)

maschio 3-6 cm femmina 4-10 cm

Ingestione uova larvate (L2) = migrazione EPTE come *T. canis*

Ingestione L3 (latte) od ospiti paratenici = no migrazione

Infestazione transmammaria come via più importante

NO infestazione prenatale

Periodo di prepatenza ca. 8 sett

Uova molto simili a quelle di T. canis

Toxascaris leonina (von Linstow 1902)

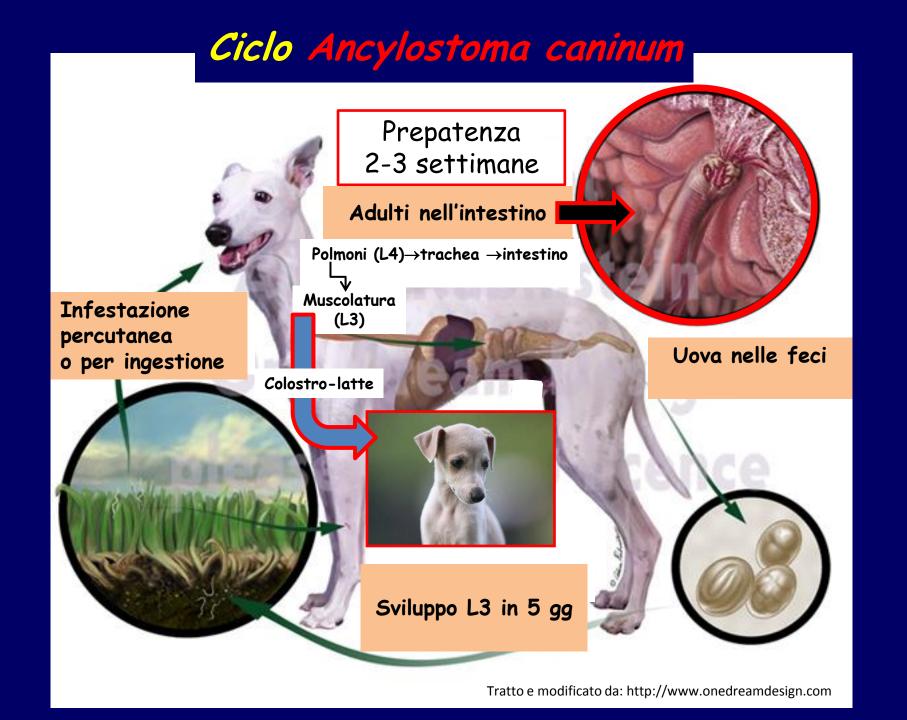
Macroscopicamente indistinguibile da *T. canis*, anche se più piccolo (maschi 7 cm, femmine 10 cm)

Infestazione per:

- ingestione uova larvate/ospiti paratenici;
- No migrazioni extraintestinali
- periodo di prepatenza: ca. 11 sett

Uova (75x85 µm) diverse da quelle di *Toxocara*

<u>ANCILOSTOMI</u>



Ancylostoma caninum (Ercolani, 1859)

maschio 9-12 mm femmina 15-21 mm

A. tubaeforme (Zeder, 1800)

Morfologicamente simile ad *A. caninum*, ma più piccolo

(maschio 5-9 mm, femmina 7-13 mm)

Ciclo molto simile a quello di A. caninum

Infestazione per ingestione o penetrazione transcutanea delle larve

Trasmissione transmammaria non dimostrata

Roditori come possibili ospiti paratenici

Prepatenza ca. 2 settimane

Uncinaria stenocephala (Railliet, 1884)

maschio 5-9 mm femmina 7-13 mm

Uova 65-80 \times 40-50 μ m

Infestazione per via orale o ingestione di ospiti paratenici (roditori),...

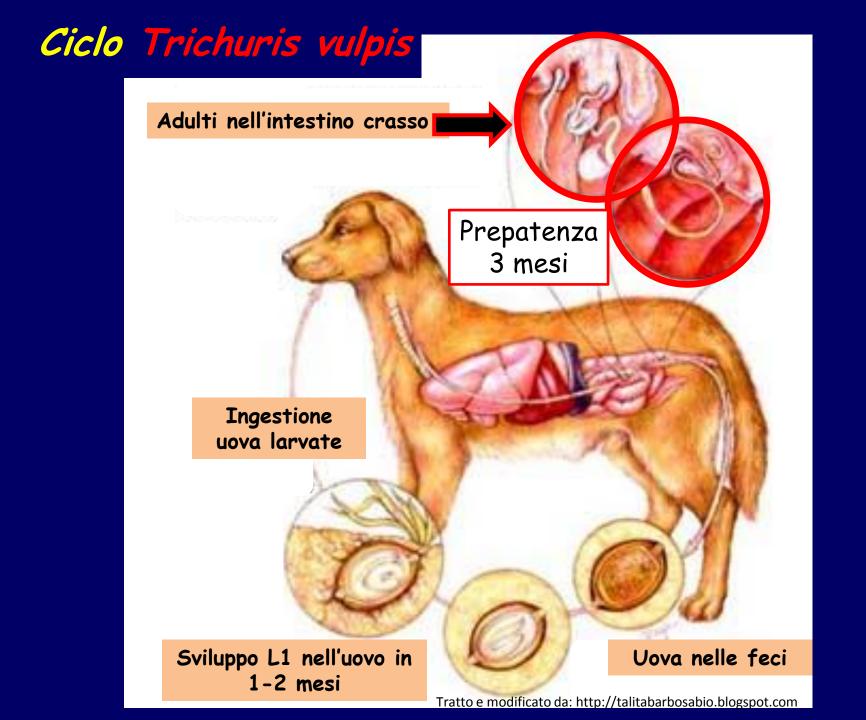
... larve per via percutanea difficilmente raggiungono l'intestino

Trasmissione transmammaria e transuterina non dimostrata

Periodo prepatenza di ca. 2 settimane

TRICHURIDI

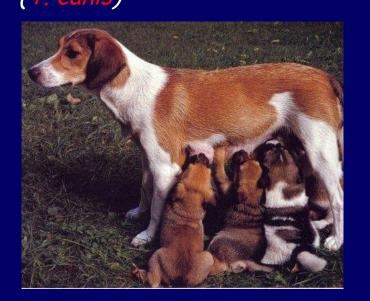
Trichuris vulpis (Froelich, 1798)



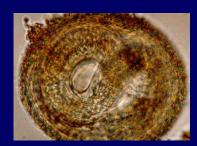
Lunghi 4,5-7,5 cm

«vermi a frusta»

Uova a «limone»: 85x40 µm con tappi polari


RIASSUMENDO:

	Migrazione	Trasmissione			
Parassita	extraintestinale larve	Congenita	Lattea	Ospiti paratenici	
T. canis	si	si	si	si	
T. leonina	no	no	no	si	
A. caninum	si	no	si	si	
U. stenocephala	si	no	no	si	
T. vulpis	no	no	no	si	

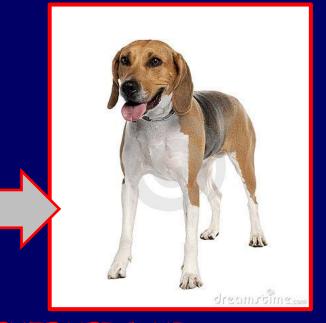


ASCARIDI - EPIDEMIOLOGIA

- Prolifici (700 15.000 upg/giorno/cane);
- Resistenza uova larvate (anche anni)
- Resistenza larve in ospiti paratenici
- Parziale sviluppo immunità
- Infestazione congenita e galattogena (T. canis)

ELEVATA
CONTAMINAZIONE
AMBIENTALE

> PROBLEMA NEI CUCCIOLI SOTTO I 6 MESI D'ETÀ



- Molto prolifici (A. caninum anche milioni uova/giorno)
- Aree a prato, ricoveri umidi favoriscono la sopravvivenza delle L3 e la trasmissione transcutanea/orale

- Parziale sviluppo immunità
- infestazione galattogena (larve A. caninum fino a tre settimane dopo il parto)

FREQUENTE NEI CANI SOTTO 1 ANNO DI VITA

TRICHURIDI - EPIDEMIOLOGIA

Elevatissima resistenza (anni) delle uova larvate nell'ambiente

 Scarso sviluppo immunità

MAGGIORI CARICHE PARASSITARIE
NEI CANI ADULTI

Positività copromicroscopiche (%) in canili

(Fonte: IZSVenezie, Facoltà Med. Vet. Univ. di Padova)

	Regione	Anno		
Ascaridi <i>(T. canis)</i>	Ancilostomi (A. caninum)	Trichuridi (T. vulpis)		
12,2	3,0	24,7	Veneto	2003
11,8	(3,1)	22,0	Veneto	2006
1 3,6	1,1	15,9	Friuli VG	2011

... in linea con dati nazionali

Spesso nessuna differenza significativa tra cani randagi e di proprietà

FATTORI DI RISCHIO

Età

trichuridi: cani adulti

ascaridi e ancilostomi: cani giovani

Igiene ambientale (allevamenti, canili, aree pubbliche ...)

RIASSUMENDO:

	Migrazione	Trasmissione		ne
Parassita	extraintestinale larve	Congenita	Lattea	Ospiti paratenici
T. cati	si	no	si	si
T. leonina	no	no	no	si
A. tubaeforme	si	no	no	si

ASCARIDI - EPIDEMIOLOGIA

- Prolifici
- Resistenza uova larvate

- Resistenza larve in ospiti paratenici (forte istinto predatorio del gatto)
- Maggior parte delle infestazioni (T. cati) per via galattogena

ANCILOSTOMI- EPIDEMIOLOGIA

- Infestazione via orale o transcutanea, ...
- ... fortemente immunogena

Positività copromicroscopiche (%) nel gatto

(Fonte: IZSVenezie, Facoltà Med. Vet. Univ. di Padova)

Parassita		Regione	Anno	Anagrafe
Ascaridi <i>(T. cati)</i>	Ancilostomi (A. tubaeforme)			
8,7	0,0	Veneto, FVG	2005	Proprietà
12,5	0,0	Veneto, FVG	2005	Colonie
22,4	25,0	Veneto	2006	Colonie

Ascaridi: variabilità elevata (1-70%)

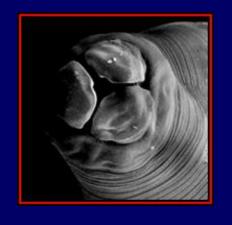
Ancilostomi: picchi (25% o più) in colonie feline

... e nelle aree pubbliche?

Ascaridi (campioni positivi)

Parassita	Prevalenza (%)	Sito di indagine	Bibliografia
	2,5	Bari	Lia <i>et al</i> , 2002
	14,8	Bari	Tarsitano et al, 2010
	24,0	Marche	Habluetzel <i>et al</i> , 2003
T. canis		(aree urbane e rurali)	nabiuetzei et ui, 2005
i. cariis	3,6	Messina	Risitano et al, 2007
	5,5 0,7	Milano	Genchi et al, 2007
		Napoli	Rinaldi et al, 2006
	8,0	Sassari	Scala et al, 2009
T. leonina	1,4	Napoli	Rinaldi et al, 2006
i. leomina	0,5	Sassari	Scala et al, 2009

... e nelle aree pubbliche?


Parassita	Prevalenza (%)	Sito di indagine	Bibliografia
	1,6	Bari	Lia <i>et al,</i> 2002
	9,2	Bari	Tarsitano et al, 2010
A. caninum	2,4	Napoli	Veneziano <i>et al</i> , 2006
A. Cummum	2,6	Messina	Risitano et al, 2007
	2,0	Milano	Genchi <i>et al,</i> 2007
	4,0	Sassari	Scala <i>et al</i> , 2009

Trichuridi (campioni positivi)

Parassita	Prevalenza (%)	Sito di indagine	Bibliografia
	(10,1)	Napoli	Rinaldi et al, 2006
	1,9	Sassari	Scala et al, 2009
T. vulpis	1,3	Messina	Risitano et al, 2007
	8,0	Milano	Genchi et al, 2007
	2,5	Bari	Lia et al, 2002

Ascaridi, ancilostomi e trichuridi

Un problema antico...

...attuale...

...che richiede

MODERNO CONTROLLO !!!

Efficacia diversi principi attivi

Classe farmacologica	Principio attivo (molecola associata nella preparazione)	Via di somm.	Parassiti sensibili (X) Attività su stadi larvali/adulti immaturi (X)			
			Ascaridi	Ancilostomi	Trichuridi	
IMIDAZOTIAZOLICI	Levamisolo	SC	X			
TETRAIDROPIRIMIDINICI	Pyrantel	os	×	×		
	Fenbendazolo	05	X	X	Х	
BENZIMIDAZOLICI	Flubendazolo	os	X	X	X	
	Mebendazolo	os	X	X	X	
PROBENZIMIDAZOLICI	Febantel	os	X	X		
PIPERAZINE	Piperazina	os	X	X		
AVERMECTINE	Ivermectina*	os				
AVERMECTINE	Selamectina*	spot on	X			
	Milbemicina ossima*	os	X	X	X	
MILBEMICINE	Moxidectina* (imidacloprid)	Spot on	×	×	X	
	Moxidectina*	sc		×		
	Moxidectifid	os				

^{*} Profilassi Dirofilariosi

Efficacia diversi principi attivi

Classe farmacologica	Principio attivo (molecola associata nella preparazione)	Via di somm.	Larvali/adulti	su stadi immaturi (X)
TAATO AZOTT AZOLICT		40	Ascaridi ~	Ancilostomi
IMIDAZOTIAZOLICI	Levamisolo	SC	X	
TETRAIDROPIRIMIDINICI	Pyrantel	OS	×	×
	Fenbendazolo	os	X	X
BENZIMIDAZOLICI	Flubendazolo	os	X	X
	Mebendazolo	os	X	X
PIPERAZINE	Piperazina	os	X	X
AVERMECTINE	Ivermectina*	os		X
AVERMECTINE	Selamectina*	spot on	X	X
MILBEMICINE	Milbemicina* (Praziquantel)	os	×	×
WILDEWICTINE	Moxidectina* (imidacloprid)	spot on	×	×
CYCLOOCTADEPSIPEPTIDI	Emodepside (Praziquantel)	spot on	×	×

^{*} Profilassi Dirofilariosi

Principali avvertenze

Classe farmacologica	Principio attivo (molecola	Età minima At		Parassiti sensibili (X) Attività su stadi larvali e adulti immaturi (X)			Note
	associata nella preparazione)	(settimane)		Asc.	Anc.	Tric.	
IMIDAZOTIAZOLICI	Levamisolo	n.d.	si	×			Attività solo parziale su Ancilostomi
TETRAIDROPIRIMIDINICI	Pyrantel	1	si	×	X		-
	Fenbendazolo	n.d.	no	X	X	X	-
	Flubendazolo	1	si	X	X	X	-
BENZIMIDAZOLICI	Mebendazolo	1	No prime 2 sett. (dopo valutare	X	X	X	Assenza studi sui seguenti
		•	R/B)	(Attivo anche su uova)			45 gg di gravidanza
PROBENZIMIDAZOLICI	Febantel	n.d.	no	×	×		_
THOSE NEIMED NEOFF	1 obdition	11.0.	110	(Attivo anche su uova)			
PIPERAZINE	Piperazina	1	si	×	×		-
AVERMECTINE	*Selamectina	6	si	X			-
MILBEMICINE	*Milbemicina	2	si	X	×	X	No in cani già positivi per FCP
	ossima						e altamente microfilaremici
	*Moxidectina	7	n.d.	×	×	X	Evitare ingestione da parte di Collie, Bobtail,
	(imidacloprid)	,		*	^	^	razze/incroci correlati
	*Moxidectina	7	n.d.		X		

* Profilassi Dirofilariosi

n.d. = non disponibile

Principali avvertenze

Classe farmacologica	Principio attivo (molecola associata nella preparazione)	Età minima per primo trattam. (settimane)	Uso gravidanza e allattamento	Attività s	sensibili (X) u stadi larvali immaturi (X) Anc.	Note
IMIDAZOTIAZOLICI	Levamisolo	n.d.	si	X		Attività solo parziale su Ancilostomi
TETRAIDROPIRIMIDINICI	Pyrantel	1	Si	X	X	-
	Fenbendazolo	n.d.	no	Х	×	Possibile vomito e diarrea dopo il trattamento
BENZIMIDAZOLICI	Flubendazolo	3	si	X	×	Possibile transitoria salivazione
	Mebendazolo	1	No prime 2 sett. (poi valutare R/B)	×	×	Assenza studi sui seguenti 45 gg di gravidanza Attivo anche su uova
PIPERAZINE	Piperazina	1	si	×	Х	-
AVEDAGETTAGE	Ivermectina*	6	n.d.	Х	X	
AVERMECTINE	Selamectina*	6	Si	Х	X	-
MILBEMICINE	Milbemicina * (Praziquantel)	6	Si	X	×	Possibile scialorrea temporanea con sovradosaggi
	Moxidectina* (Imidacloprid)	9	n.d.	×	×	In gatti pos. per FCP possibili gravi reazioni avverse
CYCLOOCTADEPSIPEPTIDI	Emodepside* (Praziquantel)	8	si (vedi note)	×	×	Dimostrata possibile interferenza su sviluppo embrio-fetale nei ratti

* Profilassi Dirofilariosi

n.d. = non disponibile

Protocollo terapeutico

CAGNA GRAVIDA

T. canis
A. caninum ...
sarò positiva?

Trattamento	Effetto
Almeno una volta con farmaco efficace anche su forme larvali/adulti immaturi	Diminuzione trasmissione pre/neo-natale (T. canis) e neo-natale (A. caninum)
Trattamento insieme ai cuccioli	Controllo infestazioni <i>post partum</i> Riduzione contaminazione ambientale

Protocollo terapeutico

CUCCIOLI

Trattamento	Età animale	Effetto
1°	2-3 sett.	Eliminazione parassiti acquisiti durante periodo pre/neo-natale (T. canis) e neo-natale (A. caninum)
2°	5 sett.	
3°	3 mesi	

3°	3 mesi
4°	5 mesi

Controllo possibili reinfestazioni Da *T. canis* e *A. caninum*

ADULTI

Ogni 6 mesi: accertamento diagnostico ed eventuale trattamento Controllo reinfestazioni da *T. canis* e *A. caninum*, infestazioni da *T. leonina* e *T. vulpis*Controllo contaminazione ambientale

Protocollo terapeutico

T. cati ... sarò positiva?

Trattamento	Effetto
Almeno una volta con farmaco efficace anche su forme larvali/adulti immaturi	Diminuzione trasmissione neo-natale <i>(T. cati)</i>
Accertamento diagnostico ed eventuale trattamento a 2-3 mesi dal parto	Controllo infestazioni <i>post partum</i> (T. cati, A. tubaeforme)

Protocollo terapeutico

CUCCIOLI

Trattamento	Età animale	Effetto
1°	4-6 sett.	Eliminazione parassiti (<i>T. cati</i>) acquisiti durante periodo neo-natale
2°	2 mesi	
3°	4 mesi	Controllo possibili reinfestazioni da <i>T. cati</i> e <i>A. tubaeforme</i>
4°	6 mesi	

ADULTI

Ogni 6 mesi:
accertamento
diagnostico
eventuale trattamento

Controllo reinfestazioni da T. cati e infestazioni da A. tubaeforme,

Controllo contaminazione ambientale

CONTROLLO AMBIENTALE

Canili, gattili, allevamenti

Pulizia pavimenti box

Raccolta feci

Disinfezioni (etanolo o ipoclorito di sodio)

Controllo roditori

CONTROLLO AMBIENTALE

Aree urbane (parci pubblici, giardini, strade,...)

Un moderno controllo degli elminti intestinali del cane e del gatto non deve prescindere da:

- Monitoraggio elmintiasi nelle popolazioni ospite
- Valutazione del grado di fecalizzazione/contaminazione in aree urbane
- Educazione al rispetto delle ordinanze comunali in materia di conduzione del cane e raccolta delle feci
- > Divulgazione delle conoscenze sulla problematica
- Percezione del pubblico (proprietari e non) relativamente ai rischi sanitari associati alla fecalizzazione in ambiente urbano

Zoonoses Public Health. 2010 Dec;57(7-8):e213-6. doi: 10.1111/j.1863-2378.2010.01330.x.

Effects of disinfectants on Toxocara canis embryogenesis and larval establishment in mice tissues.

Verocai GG, Tavares PV, Ribeiro Fde A, Correia TR, Scott FB.

Departamento de Parasitologia Animal, Institutor de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil. gverocai@gmail.com

Abstract

The objectives of this study were (i) to evaluate the effects of several different disinfectant solutions on embryonic development of Toxocara canis eggs and (ii) to investigate the potential infectivity of exposed eggs by assessing larval establishment in various tissues in a murine model. All the disinfectants tested were products routinely used in veterinary clinics, kennels, animal shelters and laboratories. Ova were obtained from gravid female T. canis uteri. Thirty samples containing 10,000 eggs were divided into five groups of six identical sample tubes per group. The treatments for the groups were as follows: Group H benzalconium chloride, Group A 70% ethanol, Group B 2-2.5% sodium hypochlorite solution, Group L 7.99% formaldehyde-based disinfectant and Group C tap water (controls). Samples were incubated at 27 ± 1°C and 80 ± 10% relative humidity. Embryonic development was evaluated on days +6, +9, +12, +15, +18, +21, +25, +28 and +36 of exposure by visual observation under light microscopy. Seventy percent ethanol degenerated all eggs within a few days and thus inhibited larval development. Sodium hypochlorite removed the external layer of the ova, but eggs harboured infective larvae for up to 2 weeks. Benzalconium chloride and formaldehyde-based disinfectants had no effect on T. canis embryogenesis according to comparison with control eggs (P > 0.05). Embryonated eggs from each of the six samples from Groups C, H and L were administered to mice as only these ova were considered viable based on in vitro trial. On day 30pi, those were euthanized and had their tissues were submitted to organ compression (brains) or acid-isolation technique (kidneys, lungs, livers and carcasses) for larval counting. The mean number of recovered larvae for Groups C, H and L were: 512.8, 393.7 and 477 respectively (P > 0.05). Larvae derived from Groups H and L eggs maintained their ability to migrate. However, larval establishment pattern differed from control. While certain disinfectants do negatively affect embryogenesis

© 2010 Blackwell Verlag GmbH.

PMID: 20500505 [PubMed - indexed for MEDLINE]

Ann Trop Med Parasitol. 2004 Apr;98(3):251-60.

The infectivity and antigenicity of Toxocara canis eggs can be retained after long-term preservation.

Chung LY, Fang BH, Chang JH, Chye SM, Yen CM.

Department of Parasitology, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung, Taiwan.

Abstract

Suspensions of fertilized eggs of Toxocara canis were mixed with 2% neutral formalin and preserved at 4 degrees C. When, after storage for 0, 12, 18, 21 and 24 months, samples of the eggs were incubated at 30 degrees C for 12 days, 96.8%, 92.6%, 74.1%, 51.0% and 19.3% of the eggs in the samples were found to embryonate. The embryonated eggs produced from the fertilized eggs preserved (in 2% neutral formalin at 4 degrees C) for 0, 12, 18 and 21 months were then tested for their infectivity to BALB/c mice, each mouse being given 800 embryonated eggs. The numbers of larvae recovered from the mice and the sites from which they were recovered, 2 or 14 days post-infection, appeared unaffected by the length of storage of the eggs. The infected mice all had similar eosinophil counts in their peripheral blood and similar serum titres of Toxocara-specific IgM and IgG antibodies, and cultures of their spleen cells produced similar amounts of interleukin-4, interleukin-5 and interferon-gamma when stimulated with concanavalin A. The results of SDS-PAGE indicated that egg preservation for at least 21 months had no effect on the excretory-secretory antigens in samples of medium from cultures of infective larvae released from the eggs. In summary, at least 50% of the fertilized eggs preserved in 2% neutral formalin at 4 degrees C for 21 months could fully embryonate and then had the same infectivity and antigenicity as embryonated fresh eggs.

PMID: 15119970 [PubMed - indexed for MEDLINE]

Parasitol Res. 2006 Oct;99(5):558-61. Epub 2006 Apr 26.

Toxocara canis larvae viability after disinfectant-exposition.

Morrondo P, Díez-Morrondo C, Pedreira J, Díez-Baños N, Sánchez-Andrade R, Paz-Silva A, Díez-Baños P.

Parasitology and Parasitic Diseases, Department of Animal Pathology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, 27002, Spain. mopela@lugo.usc.es

Abstract

The effect of three routinely used disinfectants on the embryonary development of Toxocara canis eggs was evaluated both in vivo and in vitro. In the in vitro experiment, T. canis eggs were treated with the ethanol, sodium hypochlorite, and one commercial mix of benzalconium chloride and formaldehyde, and the embryonary development was assessed. After a period of 24 days incubation, ethanol was the best disinfectant because it prevented the development of the T. canis larvae 2 in the eggs, and sodium hypochlorite caused degeneration in 50% eggs. By using the commercial mix, 25% T. canis eggs developed to 2nd stage larvae. In the in vivo experiment, the embryonated eggs treated with the disinfectants were inoculated to mice, and their brain tissues were examined for larval presence on the 24th day postinfection. In addition, a control group was set up for comparison with the infected groups. No injury or T. canis larvae were observed in mice infected with sodium hypochlorite-treated eggs, opposite to that recorded in the animals infected with the commercial disinfectant-treated eggs. These results showed that both ethanol and sodium hypochlorite are very appropriate because of their full efficacy against infective T. canis eggs. Disinfection of kennels, animal shelters, cages, and veterinary clinics with one of these products to eliminate T. canis eggs and to avoid contamination is strongly recommended.

PMID: 16639631 [PubMed - indexed for MEDLINE]