Le vitamine

Le vitamine

 Sono dei nutrienti essenziali che devono essere assunti con la dieta, generalmente in minime quantità, in quanto non sono sintetizzabili dal nostro organismo.

Vitamine idrosolubili	Vitamine liposolubili
Tiamina (Vit. B1)	Retinolo (Vit. A)
Niacina (Vit. PP)	Calciferolo (Vit. D)
Riboflavina (Vit. B2)	Tocoferolo (Vit. E)
Acido pantotenico (Vit. B5)	Menadione (Vit. K)
Piridossale (Vit. B6)	
Cobalamina (Vit. B12)	
Biotina (Vit. B8)	
Acido lipoico	
Acido folico	
Acido ascorbico (Vit. C)	

Ammine necessarie

Kazimierz Funk (1884 –1967)

- Il termine vitamine è stato coniato dal biochimico Casimir Funk nel 1911 ritenendo che queste sostanze fossero delle ammine necessarie alla vita
- Le vitamine non sono generalmente rappresentate da un'unica sostanza ma da una famiglia di composti correlati che hanno in comune la proprietà di impedire l'insorgere di sindromi da carenza

Vitamine

- I bisogni nutrizionali delle differenti vitamine sono molto diversi e non è ancora chiaro se tali necessità corrispondano alla <u>quantità minima necessaria ad non</u> <u>incorrere in avitaminosi con sintomatologia clinica</u>, oppure per <u>evitare modificazioni biochimiche</u> o per <u>saturare</u> l'organismo.
- In alcuni casi, nonostante sia necessario introdurle con la dieta, un loro sovradosaggio dà effetti più pericolosi della loro mancanza.
- La carenza alimentare inoltre può non essere la sola possibile causa di deficienza poiché i bisogni di alcune vitamine possono aumentare moltissimo se vi sono impedimenti al loro utilizzo dovuti ad alterazioni del loro assorbimento o del loro metabolismo

Le vitamine

- Le vitamine idrosolubili, ad eccezione dell'acido ascorbico (vitamina C), sono tutte componenti o precursori di coenzimi, molecole a basso peso molecolare che conferiscono funzionalità chimiche specifiche a determinare reazioni enzimatiche. Sono necessarie perchè le catene laterali degli amminoacidi forniscono agli enzimi solamente uno spettro limitato di versatilità chimiche.
- Le vitamine liposolubili non sono direttamente correlate a coenzimi ma ricoprono ruoli essenziali in una varietà di processi biologici (visione, coagulazione del sangue, assorbimento del Ca²⁺)

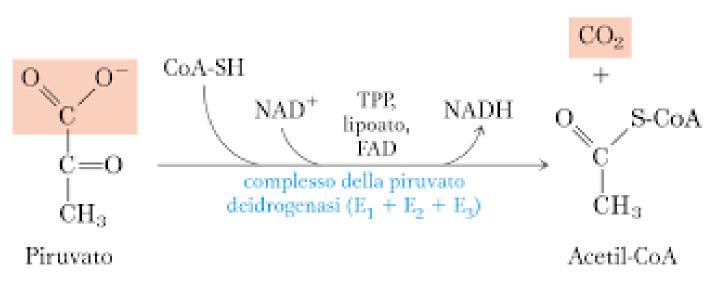
Misura della quantità delle vitamine

Spesso si usa l'**Unità internazionale** che è un'unità di misura della quantità di una sostanza, basata sul suo effetto ovvero sulla sua attività biologica. In alcuni casi, la massa equivalente a 1 UI è stata determinata *a posteriori*. In tale evenienza, la UI è abbandonata in favore di quella stabilita secondo la massa, anche se spesso rimane nell'uso.

- Vitamina A: 1 UI è l'equivalente biologico di 0,3 μg di retinolo o di 0,6 μg di β-carotene o di 1.2 μg di altri carotenoidi
- Vitamina C: 1 UI corrisponde a 50 μg di acido L-ascorbico
- **Vitamina D**: 1 UI è l'equivalente biologico di 0,025 μg di colecalciferolo o ergocalciferolo
- Vitamina E: 1 UI è l'equivalente biologico di circa 0,667 mg di α -tocoferolo o di 0,45 mg di α -tocoferol-acetato.

La vitamina B1: Tiamina

- Solubile in acqua e stabile al calore ed all'ossidazione a pH < 5.
- A pH 7 è rapidamente decomposta a 100°C


- È il precursore della tiamina pirofosfato, un coenzima coinvolto nelle reazioni del metabolismo dei carboidrati nelle quali vengono sintetizzati o scissi legami che coinvolgono gruppi carbonilici
- La sua mancanza conduce al <u>beri-beri</u> che provoca neuropatie periferiche (nevriti) e scompenso cardiaco
- Il beri-beri è frequente in Asia dove l'alimentazione è a base di riso brillato (senza crusca)

Meccanismo

• È rapidamente convertita nella forma attiva, la tiamina pirofosfato, nel fegato e nel cervello dalla tiamina difosfotranferasi.

Tiamina pirofosfato

• La tiamina pirofosfato interviene nelle reazioni di decarbossilazione degli α -chetoacidi e nella sintesi degli α -idrossichetoni

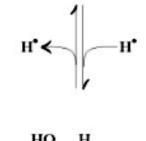
$$\Delta G^{\prime \circ} = -33,4 \text{ kJ/mole}$$

Fabbisogno e distribuzione

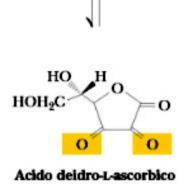
- Il fabbisogno di tiamina è di circa 0.5 mg/giorno per ogni 1000 kcal introdotte con la dieta.
- L'eccesso viene rapidamente eliminato per via renale
- È presente in elevate quantità nella carne (soprattutto maiale) e nei legumi.
- Negli alimenti è possibile la presenza di fattori antitiaminici (tiaminasi dei frutti di mare) o che ne rallentano l'assorbimento (polifenoli presenti nel caffè e nel tè o i tannini in presenza di Ca²⁺ e Mg²⁺)
- Particolarmente sensibile ad una carenza di tiamina è il piccione che assume opistotono in seguito alla polineurite da avitaminosi

Tab. 8. Contenuto di tiamina o vitamina B	di alcuni alimenti	(mg/100 g).
---	--------------------	-------------

Alimento	Tiamina	Alimento	Tiamina
Germe di grano	2,44	Capocollo	0,70
Arachidi	1,52	Riso, integrale	0,59
Suino, coscio	1,35	Noci fresche	0,58
Suino, bistecca	1,12	Lenticchie	0,57
Fiocchi di crusca di grano	1,00	Nocciole	0,51
Fiocchi di mais	1,00	Fave secche	0,50
Riso soffiato	1,00	Noci secche	0,45
Pasta integrale .	0,99	Fagioli secchi	0,40
Prosciutto crudo	0,91	Mozzarella	0,05
Crusca di grano	0,89	Latte intero UHT	0,05
Pistacchi, secchi	0,82	Parmigiano	0,02
Lievito di birra compresso	0,71	Caciotta	0,02


La vitamina C: acido ascorbico

- La deficienza di vitamina C è causa dello scorbuto che si può riscontrare in individui che non fanno uso di cibi freschi.
- Questa vitamina è essenziale per la formazione del collagene e aiuta a mantenere l'integrità del tessuto connettivo, del tessuto osseo, della dentina dei denti; è indispensabile per la guarigione delle ferite e facilita l'assorbimento del ferro.
- Viene assorbita a livello intestinale tramite un trasportatore a simporto con il Natacilmente saturabile.
- Alcuni organi (ghiandole surrenali, cervello, cristallino) ne sono particolarmente ricchi
- Superata una soglia di concentrazione, variabile da tessuto a tessuto, l'acido ascorbico in eccesso viene eliminato in genere dopo essere stato metabolizzato ad acido ossalico


OH
HO
OH
$$_{O}$$
OH
 $_{O}$
 $_{O}$
OH
 $_{O}$

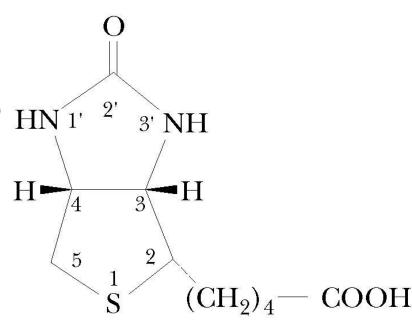
Acido ascorbico

- L'acido ascorbico è necessario alla dieta dei primati, della cavia, dei pipistrelli, di molti pesci e degli insetti. Gli altri animali la sintetizzano a partire dal glucosio via ac. glucuronico.
- È coinvolto nella riduzione dei metalli (Fe³⁺ e Cu²⁺) che a loro volta agiscono come cofattori nelle reazioni di idrossilazioni che coinvolgono l'ossigeno molecolare
- Un altro ruolo è legato alla rimozione delle specie radicaliche mediante riduzione con concomitante formazione di un radicale libero relativamente stabile (è un antiossidante),

Fabbisogno

- Il fabbisogno di acido ascorbico è di circa 30 90 mg/giorno
- È presente nella frutta e nella verdura fresca, principalmente a crescita rapida. Diminuisce con la conservazione dell'alimento. La facilità con cui si ossida ne determina la rapida scomparsa in fase di cottura, oppure a pH basici ed in presenza di metalli (ferro e rame)

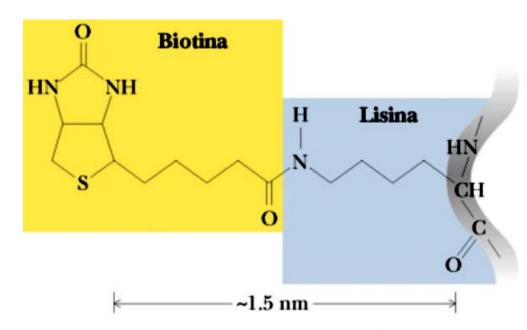
Un sovradosaggio farmacologico può condurre a calcolosi renale da


ossalati

Tab 16 Contonuto	di soldo socorbios	a vitamina C di alau	-! -!!! (/100)
Tab. 16. Contenuto	di acido ascorbico	o vitamina C di alcui	ni alimenti (mg/100 g).

Alimento	Acido ascorbico	Alimento	Acido ascorbico
Peperoncini piccanti	229	Cavolfiore	59
Ribes nero	200	Spinaci	54
Prezzemolo	162	Fragole	54
Peperoni	151	Arance/limone	50
Broccoletti di rape	110	Spremuta d'arancia	44
Kiwi	85	Mandarini	42
Foglie di rapa	81	Pompelmo/ribes rosso	40
Cavolo broccolo	77	Mandaranci	37
Succo di frutta conservato	60	Indivia	35
Lattuga da taglio	59	Melone d'estate	32

La vitamina B8 (o H): biotina


- Funge da gruppo prostetico nelle reazioni di carbossilazione che richiedono ATP e che fissano CO₂ su un substrato organico HN 1'
- 4 enzimi la utilizzano come cofattore
 - Acetil-CoA carbossilasi
 - Piruvato carbossilasi
 - propionil-CoA carbossilasi
 - β-metilcrotonil-CoA carbossilasi

Anello dell'imidazolo fuso con quello del tiofene + catena laterale

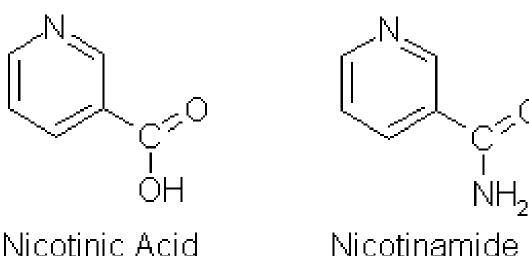
Biotina

- Le carbossilasi sono costituite da tre domini proteici
 - La BCP, biotin carrier protein che fa da supporto alla biotina
 - La biotina carbossilasi che catalizza la fissazione, ATP dipendente, del carbonato sul biotinil enzima (BCCP-COO)
 - La transcarbossilasi che trasferisce il radicale carbonico dal biotinil enzima all'accettore

Il complesso biotina-lisina (biocitina)

Legame carboamidico tra gruppo carbossilico e gruppo aminico

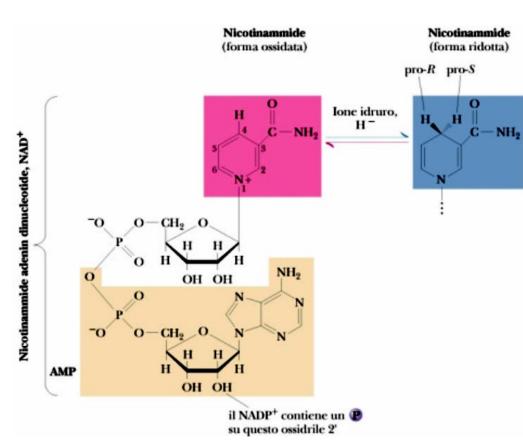
- Viene sintetizzata da numerose specie di microrganismi e piante
- Negli alimenti si ritrova in quantità adeguate nel fegato, nel tuorlo d'uovo, nel lievito e nella soia, ma comunque è prodotta dalla flora intestinale e trasportata nel plasma legata all'albumina o globuline.
- Si ritiene che il fabbisogno si aggiri attorno ai 100 – 300 µg/giorno ma è molto rara l'avitaminosi (dieta con albume crudo)
- L'eccesso viene eliminato per via renale


Fabbisogno

Tab. 13. Contenuto di biotina o vitamina B₈ di alcuni alimenti (μg/100 g).

Alimento	Biotina	Alimento	Biotina
Fegatini di pollo	210	Uovo	20
Lievito secco	200	Salmone	7
Arachidi tostate	130	Sgombro	5
Nocciole	76	Parmigiano	3,3
Lievito	60	Emmenthal	3
Mandorle	64	Yogurt intero	2,6
Lievito fresco	60	Banana	2,6
Tuorlo d'uovo	50	Mozzarella	2,2
Crusca di grano	45	Latte intero, UHT	1,8
Germe di grano	25	Gruyere	1,5

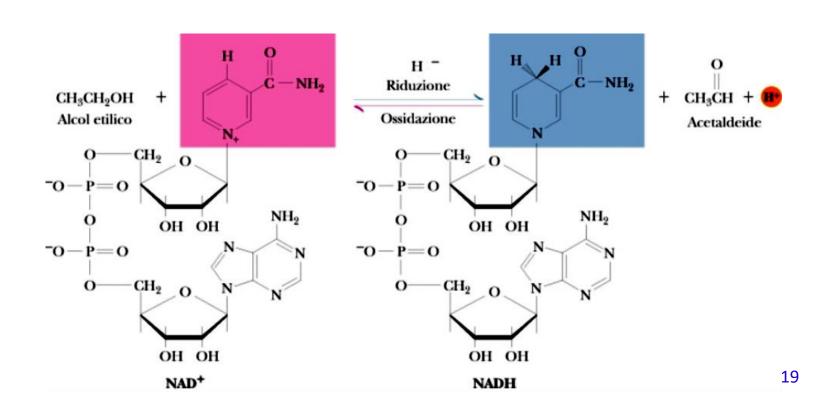
La vitamina PP (B3): niacina


- Indica genericamente l'acido piridin-3-carbossilico (acido nicotinico) ed i suoi derivati
- La forma biologicamente attiva è la nicotinamide, l'amide dell'acido nicotinico
- È molto solubile in acqua e stabile fino a 120 °C
- Nell'uomo può essere sintetizzata in certa misura a partire dal triptofano (60mg porta 1mg di niacina).
- L'avitaminosi dà la pellagra che si evidenzia con arrossamento ed inspessimento della pelle seguito da annerimento soprattutto delle parti esposte alla luce (pelle agra) (alimentazione solo mais).

Nicotinamide

Nicotinamide Adenin Dinucleotide

- Forma i due importanti coenzimi il NAD(H) e il NADP(H) che costituiscono i cofattori essenziali per molte deidrogenasi che catalizzano reazioni di ossidoriduzione
- Generalmente gli enzimi che utilizzano il NAD partecipano al metabolismo ossidativo dei glucidi e dei lipidi, mentre quelli che utilizzano il NADP vengono utilizzati con funzioni anaboliche

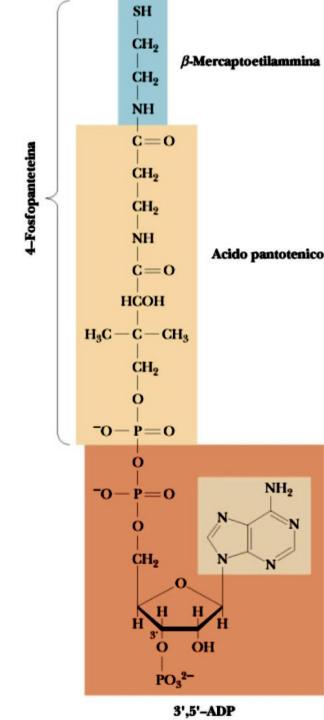


5 ribosil-1-pirofosfato + ac. Nicotinico + ATP

L'alcool deidrogenasi

L'ossidazione dell'etanolo avviene in due tappe successive:

- Da etanolo ad aldeide acetica (molto tossica) da parte dell'alcool deidrogenasi (Zn²⁺ dipendente)
- Da aldeide acetica ad acido acetico da parte dell'acetaldeide deidrogenasi


Fabbisogno

- La pellagra è stata descritta già nel '700 ed era molto nota tra le popolazioni che si nutrivano di polenta come sindrome dalle 3 D = Demenza, Dermatite e Diarrea.
- Nel dopoguerra è stato scoperto che poteva essere completamente risolta da una dieta con un opportuno (10-15 mg/giorno) apporto di niacina.
- La carne è ricca di niacina, mentre si ritrova in scarsa quantità nei vegetali

Alimento	Contenuto in niacina (mg/kg)
Crusca di grano	29.6
Fegato suino	14.5
Petto di pollo	13.0
Tonno sott'olio	11.9
Sarde	9.7
Tacchino	8.0
Sgombro	7.6

La vitamina B5 o acido pantotenico

- È l'ammide dell'acido 2,4-diidrossi-3,3dimetilbutirrico e della β-alanina
- L'acido pantotenico fa parte sia del Coenzima A (CoA-SH) che della Acyl Carrier Protein (proteina trasportatrice di acili)
- È coinvolto nella sintesi e nella degradazione degli acidi grassi

L'acido pantotenico

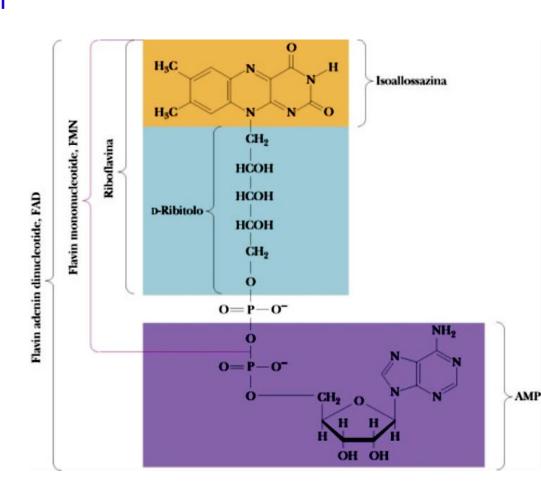
- L'avitaminosi è abbastanza rara ed in genere si manifesta assieme ad una più generale malnutrizione (dermatiti, emorragia nasale..)
- È infatti presente praticamente in tutti gli alimenti (donde il nome)
- Si stima che il fabbisogno posa essere di circa 5-10 mg/giorno
- Ne sono ricchi il fegato, il tuorlo d'uovo, il lievito, la pappa reale e le verdure.

Tab. 11. Contenuto di acido pantotenico o vitamina B₅ di alcuni alimenti (mg/100 g).

Alimento	Acido pantotenico	Alimento	Acido pantotenico
Lievito secco	11,00	Nocciole secche	1,51
Bovino, fegato	8,00	Salmone	1,02
Maiale, fegato	6,30	Cavolini di Bruxelles	1,00
Pollo, fegatini	6,30	Salmone affumicato	0,87
Uovo di gallina, tuorlo	4,60	Parmigiano	0,43
Lievito	3,50	Emmenthal	0,40
Crusca di grano	2,40	Gruyere	0,35
Germe di grano	1,90	Latte, intero UHT	0,32
Uovo di gallina, intero	1,77	Mozzarella	0,25
Arachidi tostate	1,59		

La vitamina B2: riboflavina

- Costituisce parte integrante del FMN e del FAD
- È poco solubile in acqua a pH neutro, è fotolabile e fluorescente.
- Partecipa alle reazioni di ossidoriduzione ed è generalmente legata molto strettamente, seppur non covalentemente, all'apo-enzima


Ribitolo + isoallosazina (flavina)

Riboflavina nella forma radicalica, flavosemichinone

Fig. 14. Strutture relative alle forma ossidata, parzialmente ridotta e ridotta dei coenzimi flavinici.

- L'FMN è una riboflavina fosforilata
- II FAD si forma da FMN + ATP
- PLE proteine che possiedono il FAD come cofattore sono molto diffuse e possiedono uno spettro ottico caratteristico ed un intenso colore giallo (λ_{max} = 450 nm) che scompare quando avviene la riduzione
- Gli enzimi che contengono cofattori flavinici possono catalizzare reazioni di trasferimento elettronico sia mono che bi-elettroniche

FMN e FAD

- L'avitaminosi è molto rara e si manifesta con lesioni alle labbra (cheilosi) ed alle mucose
- L'eccesso non presenta tossicità ed è rapidamente eliminata per via renale
- Le fonti migliori sono fegato, latte, uova, verdure a foglia verde
- Viene consigliato un apporto di circa 1-1,5 mg/giorno

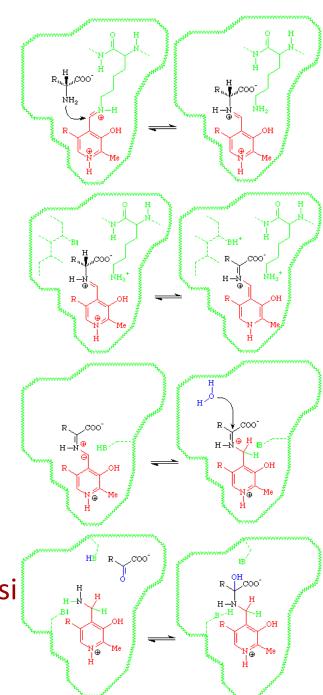
Fabbisogno

Tab. 9. Contenuto di riboflavina o vitamina B₂ di alcuni alimenti (mg/100 g).

Alimento	Riboflavina	Alimento	Riboflavina
Bovino, fegato	3,30	Scamorza	0,51
Suino, fegato	2,98	Pecorino	0,47
Agnello, coratella	2,04	Asparagi di bosco	0,43
Lievito di birra compresso	1,65	Uova	0,31
Riso soffiato	1,50	Vitello, carne magra	0,26
Fiocchi di mais	1,50	Prosciutto crudo	0,26
Fiocchi di crusca di grano	1,50	Mortadella suino	0,26
Salsiccia di fegato	0,92	Asparagi di serra	0,25
Provolone	0,83	Capocollo	0,20
Caviale	0,62	Salame di suino	0,20
Germe di grano	0,61	Latte intero UHT	0,19
Bresaola	0,60	Suino, bistecca	0,18
Taleggio/Camembert	0,52	Pollo intero	0,16
Mozzarella	0,51	Broccoletti di rapa	0,16

La vitamina B6: derivati del piridossale

- Raggruppa una serie di composti derivati dl 2-metil-3idrossi-5-idrossimetil-piridina, tra loro interconvertibili all'interno dell'organismo, anche se il vitamero più diffuso è il piridossolo
- Le tre forme sono considerate relativamente labili e la stabilità diminuisce all'aumentare del pH.
- Una volta all'interno dell'organismo il piridossolo viene fosforilato sull'idrossimetile in posizione 5 e ossidato a piridossal-fosfato


Piridossina o

piridossolo

Piridossale

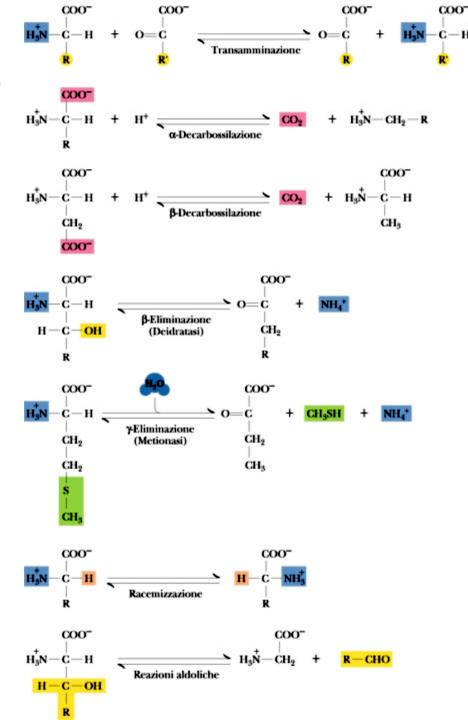
Piridossal-fosfato

 Il piridossal-fosfato è in grado di formare legami con i gruppi amminici degli amminoacidi

Il meccanismo delle transaminasi

$$H_2N = H_2O$$

$$H_2O = H_2O$$


$$H_2O = H_2O$$

$$H_2O = H_2O$$

$$H_2O = H_2O$$

Il piridossal fosfato

 Viene utilizzato nella catalisi di numerose reazioni che coinvolgono gli amminoacidi: transaminazione, decarbossilazione, racemizzazione.

Fabbisogno

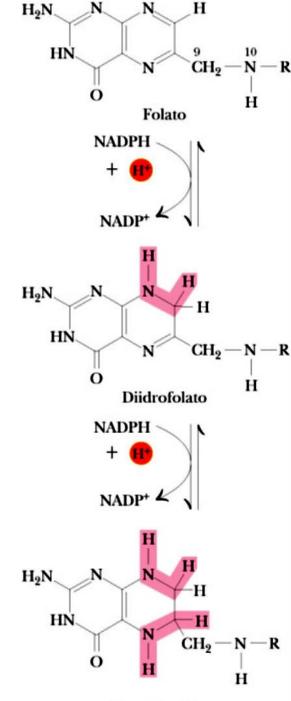
• È ampiamente distribuita in natura ed il 95 % della vitamina è assorbita passivamente nell'intestino (forme di ipovitaminosi si osservano nei bambini e nei soggetti a dieta artificiale)

Viene consigliato un fabbisogno di circa 1.3 – 1.7

mg/giorno

Tab. 12. Contenuto di piridossina o vitamina B₆ di alcuni alimenti (mg/100 g).

Alimento	Piridossina	Alimento	Piridossina
Germe di grano	3,30	Fagiano	0,66
Fiocchi di crusca di grano	1,80	Vitello	0,65
Fiocchi di mais	1,80	Porri	0,64
Riso soffiato	1,80	Castagne secche/farina	0,64
Muesli	1,60	Prosciutto crudo/speck	0,62
Crusca di grano	1,38	Lievito di birra compresso	0,60
Lenticchie	0,93	Nocciole/arachidi	0,59
Stoccafisso, secco	0,86	Farina di orzo	0,56
Bovino, fegato	0,83	Farina di frumento integr.	0,50
Faraona, petto	0,81	Castagne	0,42
Tacchino, petto	0,81	Farina di grano duro	0,41
Calamaro surgelato	0,79	Farina di segale integr.	0,35
Salmone	0,75	Pistacchi, tostati e salati	0,25
Noci secche	0,67	Farina di frumento tipo 0	0,15


L'acido folico

 Il pteroil-monoglutammato ed i suoi derivati ridotti (acido diidrofolico e tetraidrofolico) hanno la capacità di trasportare unità monocarboniose a vari stati di ossidazione (dal metile al formile) da un substrato ad un altro

Acido Folico

L'acido folico

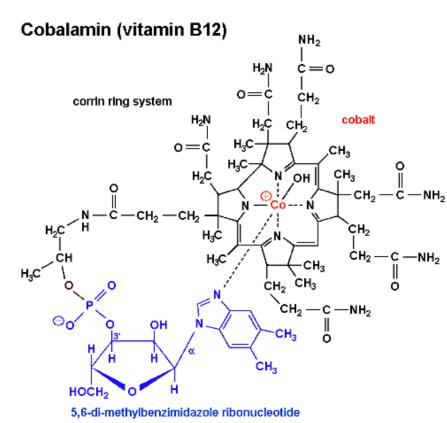
- L'acido folico introdotto con la dieta, generalmente sotto forma di poliglutammati, viene ridotto in due passaggi successivi all'interno dell'organismo per dare l'acido tetraidrofolico (THF, il coenzima)
- Partecipa alla:
 - Sintesi delle basi puriniche
 - Sintesi dell'acido timidilico
 - Interconversione serina/glicina (attraverso il 5,10 metilen-THF)
 - Conversione dell'omocisteina a metionina

Tetraidrofolato

Fabbisogno

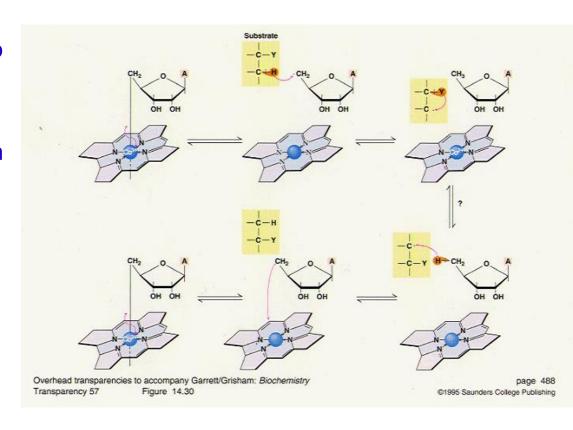
- L'acido folico è molto diffuso in natura (nelle foglie verdi) anche se l'ipovitaminosi si può riscontrare in gravidanza e negli alcolisti (porta atrofia della mucosa intestinale, steatorrea: alterato assorbimento dei lipidi)
- Si consiglia l'assunzione di circa 200 μg/giorno

Un eccesso di acido folico può mascherare una pericolosa deficienza


di cobalamina

Tab. 15. Contenuto di acido folico di alcuni alimenti (μg/100 g).

Alimento	Acido folico	Alimento	Acido folico
Lievito di birra		Broccoletti di rape	194
compresso	1250	Ceci secchi/farina	180
Dadi per brodo	1050	Asparagi (campo/serra)	175
Pollo, fegatini	995	Germogli di soia	172
Pollo, rigaglie	530	Foglie di rapa	163
Germe di grano	331	Indivia/scarola	156
Bovino, fegato	330	Spinaci	150
Cavallo, fegato	330	Fave secche ·	145
Bistecca di soia	305	Muesli	140
Suino, fegato	295	Fagioli, secchi	130
Crusca di grano	260	Uovo di gallina, tuorlo	130
Fiochi di mais	250	Bieta	124
Riso soffiato	250	Arachidi	110
Asparagi di bosco	218	, 11 do 11 di	

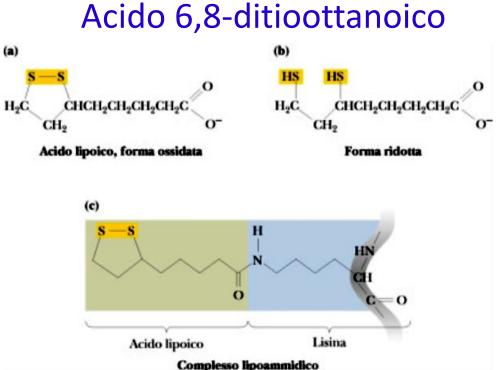

Vitamina B12: Cobalamina

- Prodotta esclusivamente da batteri e costituita da un elemento corrinoide (anello corrinico) che lega il cobalto.
- La sua scarsa disponibilità provoca anemia
- L'assorbimento avviene a livello intestinale grazie al <u>fattore</u> <u>intrinseco di Castle</u>, una glicoproteina prodotta dalle cellule delle pareti dello stomaco, che forma un complesso con la cobalamina.
- Tale complesso è assorbito nell'intestino mediante uno specifico recettore

- Due enzimi hanno bisogno della cobalammina per la loro catalisi
 - La metilmalonil-CoA mutasi, essenziale al catabolismo degli acidi grassi a catena dispari di atomi di carboinio
 - 5-metil tetraidrofolato :
 omocisteina metiltrasferasi
 che trasforma l'omocisteina
 in metionina
- Nel corso della catalisi lo stato di ossidazione del cobalto passa da 3+ a 1+
- La funzione degli enzimi è quella trasportare gruppi metilici (CH₃⁻, CH₃⁺, CH₃⁺)

Biochimica

Fabbisogno

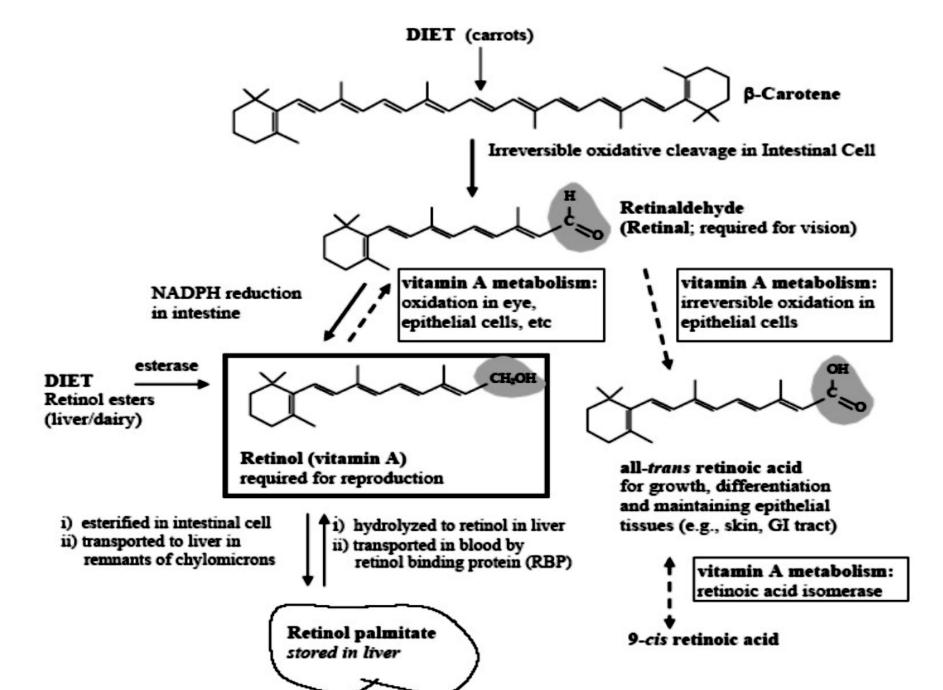

- I vegetali ne sono privi e la maggior fonte di cobalamina è rappresentata dalla flora intestinale
- Se ne consiglia l'assunzione a dosi di circa 1 2 μg/giorno

Tab. 14. Contenuto di vitamina B₁₂ o cianocobalamina di alcuni alimenti (µg/100 g).

Alimento	Vitamina B ₁₂	Alimento	Vitamina B ₁₂
Fegato di bovino	100,0	Uovo	2,5
Cozza	19,0	Mozzarella	2,1
Sardine	11,9	Emmenthal	2,0
Sgombro	8,0	Parmigiano	1,9
Tuorlo d'uovo	4,9	Gruyere	1,6
Salmone	4,0	Latte UHT	0,4

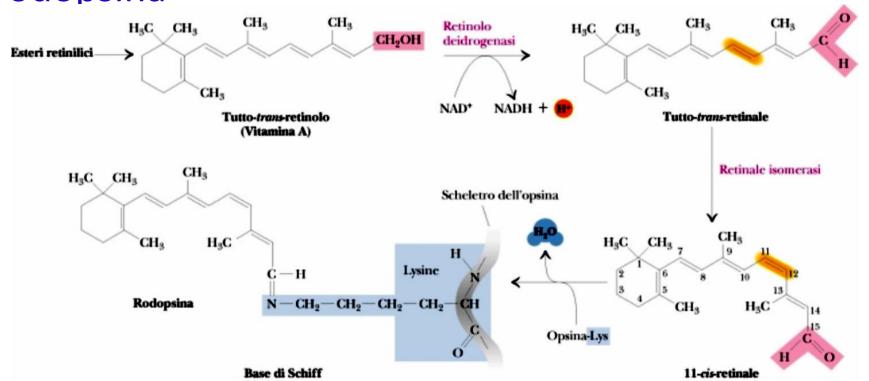
Acido lipoico o Vitamina N

- È dubbia la sua classificazione come vitamina e non vi sono evidenze che debba essere introdotto con la dieta
- È un trasportatore di gruppi acilici
- È presente in due grossi complessi multienzimatici della piruvico deidrogenasi e nella α-chetoglutarato deidrogenasi



La vitamina A: Retinolo (A1)

- Il termine Vitamina A è generico e descrive tutti i retinoidi che possiedono attività biologica.
- Sono composti derivati dai carotenoidi che costituiscono delle pro-vitamine
- La vitamina A è richiesta per la formazione del pigmento fotosensibile che è presente nella retina ed il primo sintomo dell'ipovitaminosi consiste nella cecità crepuscolare
- È inoltre necessaria per il funzionamento delle cellule mucose, per lo sviluppo del tessuto osseo


Visione generale

- La vitamina A (retinolo) è assorbito a livello intestinale assieme agli acidi grassi e quindi, dopo esterificazione con l'acido palmitico, è incorporato nei chilomicroni
- Nei vegetali la fonte di vitamina A è il β-carotene, che è anch'esso assorbito a livello intestinale, ossidativamente decomposto in due molecole di retinale che vengono ridotte a retinolo, esterificate con acido palmitico ed immesse nel circolo sotto forma di chilomicroni
- il retinol palmitato in arrivo con i chilomicroni è accumulato nel fegato
- Il fegato metabolizza, deposita il retinolo, e sintetizza le sue proteine trasportatrici ematiche
- All'interno di tutte le cellule esistono degli enzimi che legano i retinoidi e ne regolano il metabolismo cellulare
- Nei tessuti, dopo idrolisi dell'estere, il retinolo è ossidato a retinale (nella retina) o ad acido retinoico (cornea, congiuntiva, polmoni, pelle, cervello, etc.).
 L'ossidazione reversibile ad acido trans-retinoico. Quest'ultimo poi è isomerizzato reversibilmente ad acido 9-cis retinoico
- L' acido trans-retinoico e l'acido 9-cis retinoico promuovono la crescita e lo sviluppo cellulare, il differenziamento ed il mantenimento del tessuto epiteliale. Inoltre sono essenziali per lo sviluppo dell'embrione ed in particolare del suo apparato nervoso.
- Una famiglia di recettori nucleari media l'espressione di alcuni geni

La visione

 Il meccanismo della visione prevede che, in seguito all'assorbimento di un fotone, il 11-cis retinale isomerizzi a retinale tutto-trans, che si distacca dalla parte proteica (opsina) della lipoproteina rodopsina

- Nell'uomo sono presenti circa 200 mg di Vit. A, la maggior parte accumulati nel fegato.
- L'ipovitaminosi rappresenta un grave problema nel sud-est asiatico
- Si consiglia l'assunzione di 0.5 0.9 mg/giorno

Ad elevate dosi (> 4 mg/giorno) è molto tossica (cefalee, disturbi

mentali)

Tab. 3. Contenuto di vitamina A di alcuni alimenti espresso come retinolo equivalenti (μg/100 g).

Alimento	Retinolo eq.	Alimento	Retinolo eq.
Bovino, fegato	16.500	Uovo di gallina, tuorlo	640
Suino, fegato	16.500	Zucca gialla	599
Agnello, coratella	7.500	Caviale	560
Pomodoro concentrato	2.500	Radicchio verde	542
Anguilla di fiume	1.200	Spinaci	485
Carote	1.148	Tonno	450
Anguilla di mare	980	Cheddar	420
Prezzemolo	943	Agretti	392
Peperoncini piccanti	824	Gorgonzola	364
Burro	806	Albicocche	360
Basilico	658	Mascarpone	353

Nel 1991, il gruppo di ricerca del Dr. Ingo Potrykus dell'Istituto Federale Svizzero di Tecnologia ha utilizzato dei geni per introdurre il β-carotene nel riso, per convertire questa coltivazione primaria in una fonte di Vitamina A nelle zone afflitte da deficienza di Vit. A. Nel gennaio 2000 il gruppo di scienziati ha pubblicato i suoi risultati su «Science». Nel 2005 è stato

sviluppato il Golden Rice 2. Il

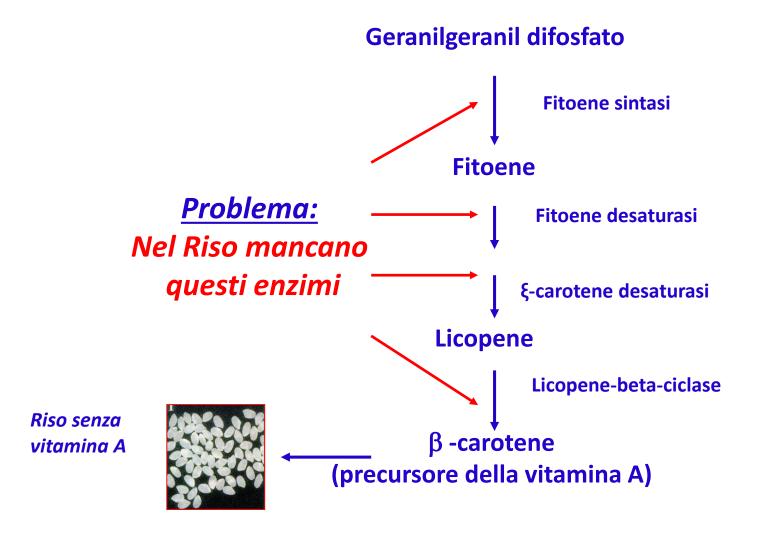
la Fondazione Rockefeller.

principale finanziatore del progetto

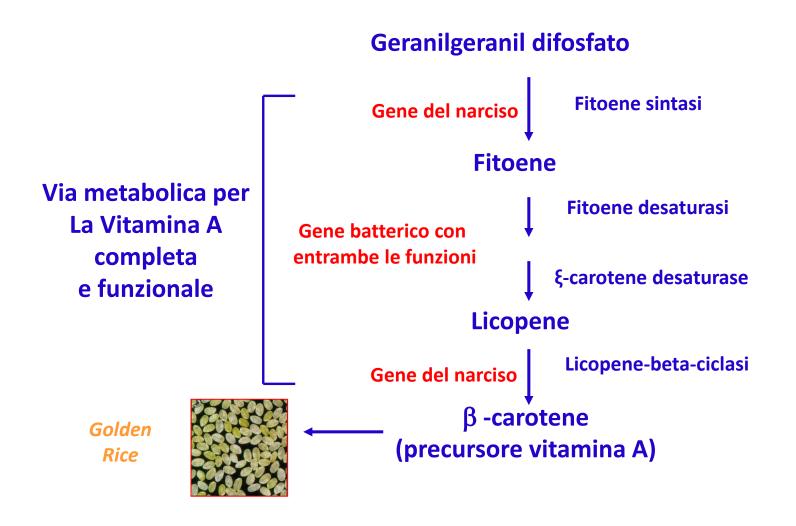
per il riso GM negli ultimi anni è stata

Il Golden Rice

La storia del Golden Rice


La carenza di Vitamina A causa:

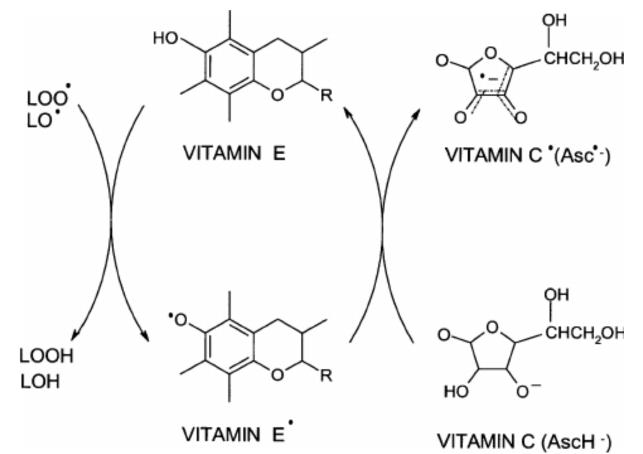
- Cecità
- Riduzione delle difese immunitarie


- 120 milioni di bambini soffrono di carenza di Vitamina A
- In molti Paesi non esistono infrastrutture adeguate alla distribuzione di Vitamine
- Un'alternativa è aumentare il contenuto di vitamina A nei prodotti alimentari (riso)

Via biosintetica del β-Carotene in Pianta

La soluzione del Golden Rice

Aggiunta dei geni della via biosintetica del β-Carotene



La vitamina E: tocoferoli

- L'α-tocoferolo è la sostanza ad attività vitaminica E più efficace
- I tocoferoli sono sostanze facilmente ossidabili, anche se stabili alla temperatura ed agli alcali in assenza di ossigeno
- Sono degli anti-ossidanti naturali e fungono da protezione degli acidi grassi insaturi nei vegetali

α-tocoferolo

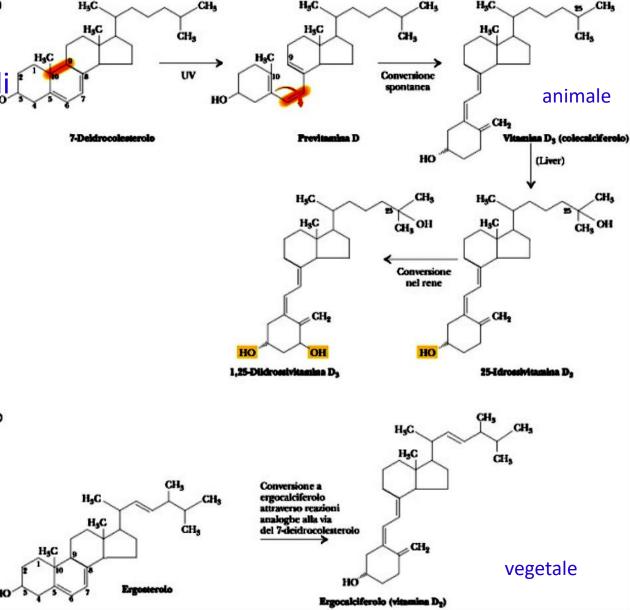
• È un antiossidante che esplica la sua azione protettiva all'interno della fase lipidica interrompendo le reazioni a catena radicalica che portano alla perossidazione degli acidi grassi insaturi

HO
$$CH_3$$
 α -tocoferolo
 CH_3
 α -tocoferilchinone

Fig. 7. Possibili meccanismi di azione dell'attività di *scavenger* dei radicali liberi e antiossidante dell'α-tocoferolo. Il radicale α -tocoferossilico, stabilizzato dalle diverse strutture di risonanza, può interagire con un radicale perossilico di un acido grasso insaturo (ROO-) per formare un addotto stabilizzato dalla struttura di tipo chinonico, interrompendo la reazione radicalica a catena. L'ossidazione produce un composto altrettanto stabile, l'α-tocoferil-chinone.

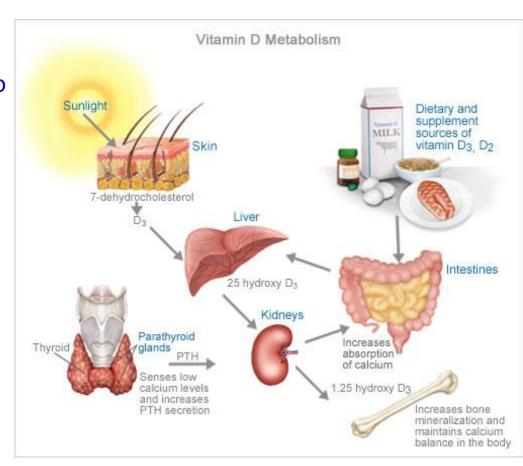
Una corretta assunzione di vitamina E (1 - 1.5 mg/giorno) è in grado di:

- Inibire il deposito di lipidi sulle pareti dei vasi sanguigni
- Diminuire la concentrazione di LDL ematiche
- Proteggere dai danni dovuti all'esposizione alle radiazioni UV
- Rallentare i processi di invecchiamento


Tab. 6. Contenuto di vitamina E di alcuni alimenti (mg/100 g).

Alimento	Vitamina E	Alimento	Vitamina E
Olio di germe di grano	136,7	Caviale	7,0
Olio di girasole	49,2	Anguilla di fiume	5,6
Margarina vegetale	32,6	Tonno sott'olio, sgocc.	5,6
Olio di vinaccioli	31,9	Pomodoro, concentrato	5,4
Olio di sesamo	29,1	Pistacchi	5,2
Nocciole	25,0	Grissini, crackers integrali	3,9
Mandorle	24,0	Noci secche	3,9
Germe di grano	22,0	Muesli	3,2
Olio di oliva extravergine	21,4	Uovo di gallina, tuorlo	3,1
Olio di mais	17,2	Burro	2,0
Olio di soia	16,1	Grana	0,9
Olio di arachidi	15,2	Mozzarella di bufala	0,33
Margarina	12,3	Mozzarella di vacca	0,20
Arachidi	10,1	Latte intero UHT	0,06

Vitamina D: calciferolo


• È una vitamina liposolubile in grado di curare il rachitismo e l'osteomalacia

- 2 vitameri: D3 colecalciferolo, D2 ergocalciferolo
- In realtà ha due fonti:
 - Una produzione endogena
 - Ed una alimentare

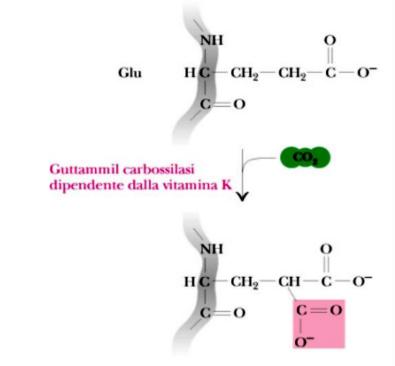
Ruolo della vitamina D

- La principale funzione della vitamina D (in realtà del 1,25-(OH)₂-vit.D) consiste nel **regolare la concentrazione del calcio** all'interno delle cellule, nel sangue e di consentirne l'assorbimento intestinale (stimola trascrizione mRNA per la "calcium binding protein"). Promuove la rimineralizzazione nelle ossa.
- Si comporta come un ormone che interagisce con specifici recettori (VDR) presenti nel nucleo delle cellule bersaglio
- Gli enzimi che contribuiscono alla sua sintesi sono controllati dal paratormone (PTH)

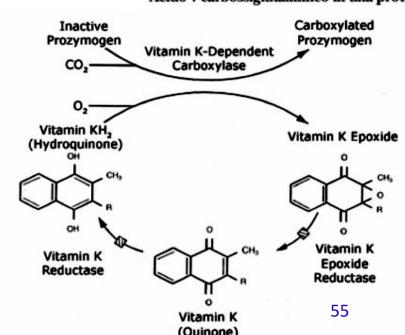
- Sono pochi i cibi ricchi di Vitamina D ed il fabbisogno giornaliero si aggira attorno ai 5 - 10 μg/giorno
- La quantità nell'organismo è determinata dall'esposizione alla luce solare
- In alcuni paesi (Stati Uniti) viene aggiunta agli alimenti (latte)
- Un eccesso di vitamina D è tossico comportando ipercalcemia ed ossificazione dei tessuti molli

Tab. 5. Contenuto di vitamina D di alcuni alimenti (μg/100 g).

Alimento	Vitamina D	Alimento	Vitamina D
Aringa	19,0	Anguilla di fiume	6,6
Tonno	16,3	Caviale	5,9
Aringa aff., marinata, salata	16,0	Acciughe o alici sott'olio	5,0
Latterini	11,0	Uovo di gallina, tuorlo	4,9
Cernia di fondo	11,0	Tonno sott'olio sgocc.	4,9
Pesce spada	11,0	Sarda	4,5
Acciughe o alici	11,0	Funghi porcini	3,1
Carpa	10,6	Sgombro o maccarello	2,9
Luccio	10,6	Uovo di gallina, intero	1,8
Tinca	10,6	Suino, fegato	1,7
Trota	10,6 .	Triglia	1,3
Salmone	8,0	Carne di vitello magra	1,3


Vitamina K

- I composti che possiedono attività vitaminica K contengono il nucleo del 2-metil-1,4naftochinone
- La molecola presente una catena laterale che differisce se il composto è di origine vegetale (K₁) o animale (K₂)
- È un sostanza fotolabile


$$\begin{array}{c|c}
O & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
&$$

Funzioni fisiologiche

- La vitamina K è un cofattore essenziale della glutamil carbossilasi che catalizza la carbossilazione dell'acido glutammico delle proteine coinvolte nella cascata enzimatica della coagulazione (protrombina)
- Tali proteine sono prodotte come proteasi inattive e richiedono per l'attivazione che il Ca²⁺ venga coordinato dal residuo di γcarbossiglutammato
- Al termine della cascata della coagulazione avviene la proteolisi del fibrinogeno (solubile) a fibrina (insolubile) che dà luogo al coagulo.

Acido γ-carbossiglutammico in una proteina

- La vitamina K è ampiamente diffusa negli alimenti
- La flora batterica intestinale ne sintetizza comunque una certa quantità
- Il livello raccomandabile di assunzione è di circa 100 μg/giorno

Tab. 7. Contenuto di vitamina K di alcuni alimenti (μg/100 g).

Alimento	Vitamina K	Alimento	Vitamina K
Cavolo riccio	729	Grano integrale	17
Tè verde (bevanda)	712	Prosciutto	15
Cime di rape	650	Arista di maiale	1,1
Spinaci	415	Uova	1.1
Broccoli	175	Fragole	10
Lattuga	129	Olio di girasole	10
Cavoli	125	Pomodori	10
Fegato di manzo	92	Avena .	10
Asparagi	57	Mais	5
Pancetta	46	Farina	4
Caffè (bevanda)	38	Pane	4
Burro	30	Riso .	3
Piselli freschi	29	Latte intero	1

Anticoagulanti

 Il melitoto officinale produce dicumarolo

Sono entrambi inibitori della **vitamina K epossido reduttasi** che catalizza la riduzione della vitamina K nel ciclo redox della vitamina, permettendone la sua ricostituzione.

 La warfarina è ő utilizzata come rodenticida