

No single major allergen has been identified in cow's milk according to either challenge tests or laboratory procedures. Indeed, clinical challenge tests demonstrate that most CMA patients react to several protein fractions of cow's milk and each allergenic protein may have several epitopes, which are widely spread along the molecules. The cow milk proteins prevalently implicated in allergic responses in children are the whey proteins α -Lactalbumin (α -La)(Bos d 4) and β -Lactoglobulin (β -Lg) (Bos d 5), in addition to the casein (CN) fraction (Bos d 8). In adults, the predominant allergen is CN, whereas sensitization to whey proteins is rare.

Cow's Milk Proteins (100%)	Protein	Allergen Name	Allergenicity	Total Protein %	MW (kDa)	pl	Amino Acid Residues	Calcium sensitivity	Phosphate groups
Caseins (80%)	as1-Casein	Bos d 8	Major	32	26.6	4.9 - 5.0	199	+++	8-9
	as2-Casein	-		10	25.2	5.2 - 5.4	207	+++++	10-13
	β-Casein	-		28	24,0	5.1 - 5.4		++	4-5
	yl-Casein	-		Traces	20,5	5.5	181	+	1
	y2-Casein	-	•	Traces	11,9	6.4	104		
	y3-Casein	-		Traces	11.5	5.8	102		
	ĸ-Casein	-		10	19	5.4 - 5.6	169		
Whey proteins (20%)	a-Lactalbumin	Bos d 4	Major	5	14.2	4.8	123		
	β-Lactog lobulin	Bos d 5	Major	10	18.3	5.3	162		
	Immun og løbulins	Bos d 7	-	3	150	-	-		1-3
	BSA	Bos d 6	-	1	66.3	4.9 - 5.1	582		
	Lactoferrin	-	-	Traces	80	8.7	703		

I più comuni allergeni alimentari

Arachidi

Crostacei

 Cereali che contengono glutine

Valori di soglia

- Bisolfito (usato come antiossidante e conservante, per es. nella frutta secca, vino e patate conservate)
- Latte
- Lupino (un tipo di legume appartenente alla famiglia delle Febacee)
- Molluschi
- Noci
- Pesce
- Sedano
- Semi di sedano
- Senape
- Soia
- Uova

Del 3-4% di adulti e del 5-8% di bambini che soffrono di allergie alimentari, esiste un alto grado di variabilità su come molti allergeni debbano essere presenti in un alimento per scatenare una reazione allergica. La minima concentrazione di allergene in grado di scatenare una reazione allergica viene definita **soglia**. A causa delle notevoli differenze nei valori soglia tra gli individui, attualmente è molto difficile identificare un valore universalmente valido **per stabilire la massima concentrazione di allergene presente in un alimento che, se ingerito, non causi una reazione avversa. Un importante traguardo della ricerca per trovare una soluzione a questo problema è sviluppare la capacità di prevedere la gravità delle reazioni negli individui.**

Tutti gli alimenti possono potenzialmente causare allergie, tuttavia, in

Europa sono 14 gli allergeni che presentano i maggiori rischi allergici

e che sono perciò soggetti a etichettatura legislativa.

Attualmente, non esiste una cura per l'allergia alimentare, se non evitare di ingerire cibo contenente gli allergeni. Per assicurare il corretto livello di informazione, la Commissione Europea (CE) ha stabilito che i maggiori 14 potenziali allergeni (vedi Tabella) debbano essere chiaramente indicati sull'etichetta di tutti i cibi preconfezionati,

quando essi o qualunque ingrediente fatto da essi vengano usati a qualsiasi livello (eccetto per il bisolfito che è esente da dichiarazioni

Legislazione della Unione Europea (UE)

quando in concentrazioni minori di 10mg/kg).

Table 1		
Major food allergens		
Food allergen family	Food source	Allergen examples
Animal food protein families		
Caseins .	Mammalian milk	αs1, αs2, β, κ-casein — cows' milk
EF-hand proteins (mainly parvalbumin)	Fish	Gad c 1 — cod
Tropomyosin	Crustaceans and mollusks	Pen a 1 — shrimp
Plant food protein families		
Bet v 1 superfamily	Fruits, vegetables, soy	Gly m 4 — soy; Mal d 1 — apple
Cupin superfamily		<i>y y</i> 11
7S globulin	Peanut, tree nuts, legumes, seeds	Ara h 1 — peanut; β-conglycinin — soy
11S globulin	Peanut, tree nuts, legumes	Ara h 3 — peanut; glycinin — soy
Cysteine protease C1 family	Soy, kiwi	Gly m 1 — soy
Profilins	Fruits, vegetables, legumes	Ara h 5 — peanut
		Api g 4 — celery
Prolamin superfamily		
Prolamins	Cereals	α- and γ-gliadin — wheat
Nonspecific lipid-transfer proteins	Fruits and vegetables	Mal d 3 — apple
		Pru p 3 — peach
		Cor a 8 — hazelnut
α-Amylase/trypsin inhibitors	Barley and rice	Hor v 1 — barley
	Deeput tree pute coode	Ara b 2 papput

7

able 8 International food al- ergen labeling requirements	Country/block	USA	European Union	Australia-New Zealand	Canada	Japar
119–121]	Cow's milk	Yes	Yes	Yes	Yes	Yes
	Hen's egg	Yes	Yes	Yes	Yes	Yes
	Wheat	Yes	Yes	Yes	Yes	Yes
	Soy	Yes	Yes	Yes	Yes	No
	Peanut	Yes	Yes	Yes	Yes	Yes
	Tree nuts	Yes	Yes	Yes	Yes	No
	Fish	Yes	Yes	Yes	Yes	No
	Crustaceans	Yes	Yes	Yes	Yes	No
	Molluses	No	No	Yes	Yes	No
	Sesame seed	No	Yes	Yes	Yes	No
	Mustard seed	No	Yes	No	No	No
	Celery	No	Yes	No	No	No
	Buckwheat	No	No	No	No	Yes

- Genetic predisposition
- Cutaneous/airway sensitization to food allergens (?)
- Intestinal microbiome

2) EFFECTOR MECHANISMS OF FOOD ALLERGY

- Antigen uptake
- Local manifestations of food allergy
- Systemic manifestations of food allergy
- Mechanisms of systemic anaphylaxis

1) BR • Ar	EAKING TOLERANCE: THE INDUCTIVE PHASE OF FOOD ALLERGY ntigen dose and timing of exposure
	In murine models high-dose exposure to antigen in early life , even a single isolated dose, can produce lymphocyte anergy , whereas low-dose exposure , especially when repeated, induces Treg cell development .
	Although oral tolerance has been shown to occur across a range of doses, frequent or continuous exposure to relatively low doses typically results in robust oral tolerance induction.
	Emerging evidence in human disease suggests that exposure to the proper dose of antigen during this critical period in early life is important for the shaping of the appropriate immune response to foods. Several epidemiologic studies have implicated delayed introduction in the increased prevalence of peanut allergy . Similarly, there is evidence that delayed introduction of cereals is associated with a higher risk of wheat allergy .

Antigen dose and timing of exposure

Two recent studies suggest that the role of **timing** of allergen exposure may **vary for different foods**. Early **egg exposure, by 4 to 6 months of age**, appeared to be **protective** for egg allergy; in contrast, **introduction of milk** in the **first 2 weeks** of life was **protective**, while introduction between **4 and 6 months of age** was associated with the **highest risk of developing milk allergy**. While these questionnaire-based studies are subject to recall bias and/or reverse causation, they point out that studies on one food allergen may not be applicable to other foods.

Differences may also be due to variations in the form of foods being introduced (i.e., natural egg vs. baked egg) or the quantity of exposure at each age period.

Allergen-specific therapies	Mechanism	Effects	Concerns
OIT	Gradual exposure to allergens to induce desensitization or tolerance	Improved clinical tolerance; clinical trials for egg, milk, and peanut currently underway	Unclear whether the effects are desensitization or induction of tolerance; side effects are common and unpredictable
SLIT	Gradual exposure to allergens to induce desensitization or tolerance	Improved clinical tolerance	Unclear whether the effects are desensitization or induction of tolerance; side effects are common
Recombinant vaccines	Mutate IgE-binding sites; proteins stimulate T cells to proliferate, but have greatly reduced IgE-binding capacity	Protection against peanut anaphylaxis in mice; clinical trials currently underway	Improved safety profile compared with conventional IT; requires identification of IgE-binding sites for each allergen
Peptide immunotherapy	Peptide fragments contain T cell epitopes, but are not of sufficient length to cross-link IgE and therefore cannot trigger mast cell or basophil activation	Protection against peanut anaphylaxis in mice	Improved safety profile compared with conventional IT, requires identification of T cell epitopes for each allergen
ISS-conjugated protein immunotherapy	ISS bound to proteins can act as adjuvants to promote switching to a Th1 response	Protection against peanut sensitization in mice	Concern for excessive Th1 stimulation and potential for autoimmunity
Plasmid DNA immunotherapy	Allergen gene immunization to promote endogenous allergen production resulting in possible induction of tolerance	Less severe and delayed peanut-induced anaphylaxis in a murine model	Serious concerns regarding safety in view of strain-dependent effects in mice
Allergen-nonspecit therapies	ic		
Anti-IgE	Decreases circulating free IgE, inhibits the early- and late-phase allergic response, suppresses inflammation and provides improved control for allergic diseases	Provides an improved threshold against peanut-induced reactions in 80% of treated patients	May be useful in combination with immunotherapy
Chinese herbal medicine	Inhibit Th2 immune response	Long-term protection from peanut anaphylaxis in a murine model. Also effective in murine model of multiple food allergies.	Oral, generally safe and well tolerated; phase I study completed
Cytokine/ anti-cytokine	Block proallergic cytokines	Anti-IL-5 causes reduction in tissue eosinophils, but does not induce resolution of histologic or clinical features of eosinophilic esophagitis (EoE).	Concerns for systemic side effects
TLR-9	Induction of Th1-type	Protect from peanut anaphylaxis in a murine model	Concern for excessive Th1 stimulation

Animal models for assessment of allergenicity

It is a commonly held belief that in order to be of utility an animal model must reflect all aspects of the clinical situation, including sensitization and challenge using the oral route, production of clinically relevant symptoms on challenge, identification of similar IgE epitopes to those observed in human sera, the induction of IgE antibody, selectivity of responses for known allergens, lack of requirement for adjuvant and reproducibility of results within and between laboratories. Another commonly held opinion is that it will not be possible to develop useful animal models due to the wide variation among different animal strains and species with respect to immune responsiveness to particular proteins.

A complete recapitulation of the human experience should not be the goal of animal model development in the context of safety assessment needs for novel proteins – or indeed for any other toxicological application. Rather, the objective is to provide a model that will provide useful and reliable information that when used in tandem with other relevant data will allow sound judgements to be made about the nature of likely hazards. For an animal model to be truly of value in this context there is a need to understand performance characteristics and to acknowledge limitations, particularly with respect to reliability under different circumstances.

Dearman et al. 2009

Animal models for assessment of allergenicity

Currently, several animal models of food allergy are used for these purposes, including **mouse, rat, swine and dog**. Food allergy is a complex disease, with genetic predisposition, environmental factors and exposure conditions all contributing to interindividual differences in susceptibility. It is therefore very unlikely that a single method using experimental animals will be developed that is capable of predicting accurately all aspects of the likely prevalence, persistence and severity of food allergy among human populations exposed to a novel allergen in the diet.

Figure 1 Food allergy models in the mouse. Many different mouse models for food allergy are in use. The biggest differences are the use of model allergens and the sensitization strategy prior to oral challenge [reviewed in (67–69)]. For oral sensitization, addition of an adjuvant (or other method to manipulate the intestinal epithelium) is needed in most cases to break tolerance in the gut. Cholera toxin (Ct) is most commonly used. However, *Staphylococcus aureus* enterotoxin B (SEB) has been shown to be effective as adjuvant and may be clinically much more relevant for human food allergy (70). Alternatively, mice are systemically sensitized (i.p. or i.d.) prior to oral challenge, resulting in anaphylactic reactions. Systemic sensitization models in the presence or absence of adjuvant (most commonly alum) are established.

Murine experimental models.

The species most commonly favoured with respect to animal model development is the mouse. This is largely driven by the availability of various immunological and molecular reagents, including transgenic animals in which particular genes of interest have been over expressed or deleted. It is generally accepted that for many aspects of immune regulation similar mechanisms are shared between man and mouse. Thus, mouse models have been used extensively for the characterization of the cellular and molecular mechanisms of various types of IgE-mediated allergic disease, including asthma to proteins or to protein detergent enzymes. In addition, a major advantage for studies involving IgE antibody responses are the availability of inbred and congenic high IgE responder mouse strains, such as the high IgE responder BALB/c strain. As such, this strain is analogous with the susceptible (atopic) human phenotype that has a propensity to develop IgEmediated disease, facilitating the identification of potentially allergenic proteins. However, caution must be exercised with the interpretation of a negative IgE antibody response to a particular protein. It has been known for many years that the major histocompatibility complex (MHC) class II haplotype (H-2) among strains of mice can play important roles in the immune recognition of proteins and the development of antibody responses

Rat experimental models.

Other rodent species, particularly the Brown Norway (BN) rat, a strain that has been characterized as mounting strong IgE antibody responses, have been the experimental model of choice for many investigators. One of the attractions of this approach is that due to the size of the species, it is possible to monitor within individual animals the kinetics of specific serum antibody (IgE and IgG) responses. In

addition, oral challenge-induced responses in previously sensitized animals may be studied as a function of changes in gut permeability, respiratory functions and blood pressure. The approach employing BN rats that has attracted most interest is one in which the test protein is delivered by daily gavage over a period of some weeks in the absence of adjuvant.

Dog experimental models.

A less commonly used experimental species for protein allergenicity studies is the dog. The dog is one of the few species in which **atopic allergies develop naturally**, and canine IgEmediated food hypersensitivity is a commonly presenting complaint in veterinary surgeries. There are several general additional advantages to the use of this large animal model: the **gut anatomy and physiology and nutritional requirements are similar to humans**, it is possible to perform repeated endoscopic analysis of the gastrointestinal tract, high IgE responder animals can be identified and the large size of primary and secondary immune organs and blood volume facilitates certain analyses, including some longitudinal analyses.

However, these advantages lend themselves more readily to mechanistic studies than to the development of more routine testing strategies for safety assessment. In addition there are limited strains available and greater interanimal variation than in rodent strains, there is a **lack of commercially available immunological reagents** and such animals are expensive to maintain, often leading to studies with smaller power.

	Comparative Medicine Copyright 2002 by the American Association for Laboratory Animal Science	Vol 52, No 4 August 2002 Pages 316-321	
	Evaluation of a Spontaneous Canine noglobulin E-Mediated Food Hyp Dynamic Changes in Serum Allergen-Specific Immunogl Values Relative to Dietary	e Model of Immu- persensitivity: and Fecal obulin E Change	
	Hilary A. Jackson, BVM&S, DVD' and Bruce Hammerbe	erg, DVM, PhD	
specific i suspecte arameter novel die Relative use of ar allergen- specific i IgE conc monoclor colony (7 total feca satisfied Furtherm provocati hypersen	To solve of the pilot study reported here was to evaluate the pilot study of the pilot study report the pilot study of the pilot study report study report the pilot study and pilot study at the pilot study of the pilot study at the pilot study of the pilot study report the pilot study at the pilot study at the pilot study of the pilot study at the pilo	nuate serum and recal tota ange in five Maltese x be of five clinically normal Maltese x beagle dogs duri ovocation. and milk-specific IgE were vas accompanied by an inc s in clinical signs of disea ndergoing the same regime nd comparison with known Values were high in the Mi ol dogs (0.7 to 6 µg/ml). T roup during the study. Alth s, significant interassay v uded that these Maltese diagnosis of canine food H n these dogs in response lel for the study of spo	agle dogs with dogs. Clinical ng feeding of a determined by rease in serum se or allergen- en. Total serum quantities of a altese x beagle total serum and nough allergen- ariability made x beagle dogs hypersensitivity. to oral allergen ntaneous food

Swine experimental models.

The final less common model that has been proposed utilizes another large animal species, the neonatal pig. The same general advantages and disadvantages apply to this experimental system as those identified for the dog. The pig has been used rather more extensively in studies that examine the development of mucosal immunity, as the pig closely resembles the human in this respect . Intraperitoneal injection in the presence of cholera toxin (CT) adjuvant is the method of immunization that has been utilized and responses to peanut proteins and the HEW allergen ovomucoid only have been determined.

Table 1. Advantages/disadvantages of nonrodent animal food all- Advantages	Disadvantages
Confirmed clinical/immunologic of natural food alloray	Limited species/strains
Anatomy/physiology/nutritional requirements similar to those of humans	Knockout strains not available
Immunopathogenic/mechanistic/therapeutic intervention strategies similar to those for humans	Lack of complete array of immunologic reagents
Repeated endoscopic analysis of gastrointestinal tract	Large size and smaller experimental animal numbers/group
Large size/numbers of primary and secondary immune organs/cells Smaller concentration of sensitizing antigen/allergen per gram of body weight	Expensive to maintain colonies