Nov 14, 2013
 Written examination exercises, Course "Forest Hydrology" and "Forest and Hillslope Hydrology"

Problem 1

For a catchment $50 \mathrm{~km}^{2}$ wide you need to compute the runoff depth following a storm with duration of 3 hours and depth of 90.0 mm . The catchment is characterised by an overall $C N$ equal to 60, Ia=0.05 Smax.
Compute

1. the runoff depth in mm ;
2. the runoff coefficient.

Results:

1. runoff depth: mm
2. runoff coefficient:

Problem 2

Rainfall in a catchment $50 \mathrm{~km}^{2}$ wide is monitored by a network of 3 stations, for which the point rainfall during a flood is:
Station 1: 200 mm
Station 2: 200 mm
Station 3: 80 mm
Use the Thiessen method to compute the event basin averaged rainfall. The Thiessen weights are as follows:
Station 1: 0.25
Station 2: 0.25
Station 3: 0.50
The catchment is characterised by an overall CN equal to 60, Ia=0.04 Smax.
Compute

1. the runoff depth in mm ;
2. the runoff depth in m^{3};
3. the runoff coefficient.

Answers
Thiessen
Areal mean precipitation: mm
Runoff depth: $\quad \mathrm{mm}$
Runoff ratio:
(-)

Problem 3

Repeat the computation of Problem 2 by considering the stations equally representative, and compute the corresponding runoff depth and runoff coefficient. Discuss the results you have obtained.

Discussion on the differences

Answers

Arithmetic average
Areal mean precipitation: mm
Runoff depth: $\quad \mathrm{mm}$
Runoff ratio:

Problem 4

An artificial reservoir is fed by a $200 \mathrm{~km}^{2}$ wide catchment. During a flood event, the runoff to the reservoir during the $i^{\text {th }}$ hour was 10 mm . During the same hour, the volume of water in the artificial reservoir increased of $1.81510^{6} \mathrm{~m}^{3}$. Compute the mean discharge from the artificial reservoir during the $i^{\text {th }}$ hour, assuming that the losses due to evapotranspiration and internal storages are negligible (please, comment this assumption).

Results:

Mean discharge: $\quad m^{3} / \mathrm{s}$

Problem 5

Consider a flood event in a catchment $50 \mathrm{~km}^{2}$ wide. Mean areal rainfall cumulated over the event is equal to 350 mm ; the runoff volume is equal to 180 mm . Considering a value for Ia equal to $0.1 S$, please compute the maximum volume of water that can be stored in the soil (S). Based on the value of S, compute the value of $C N$.

Results:

1. S :
mm
2. $C N$:

Problem 6

Consider the Problem 5, and compute the value of runoff depth for a $C N$ value increased by 10% and decreased by 10%.

Results:
1.Runoff volume ($\mathrm{CN}+10 \%$): mm
2. Runoff volume (CN-10\%): mm

Problem 7

A mean annual discharge value of $0.6 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ has been recorded at the outlet of a $20 \mathrm{~km}^{2}$ wide catchment. The annual total precipitation over the catchment is 1500 mm . Compute the evapotraspitation loss (in mm), assuming that the internal storage changes are negligible.

Results:

Evapotranspiration depth: mm

Problem 8

The mean annual precipitation over a $150 \mathrm{~km}^{2}$ wide catchment is 1300 mm . The potential evapotranspiration loss is 550 mm whereas the real evapotranspiration loss is 300 mm . Compute the mean annual runoff coefficient and the discharge values $\left(m^{3} / \mathrm{s}\right)$, assuming that the internal storage changes are negligible.

Results:

Runoff coefficient:
Mean annual discharge: $\quad \mathrm{m}^{3} / \mathrm{s}$

Problem 9

Calculate the daily evapotranspiration from a forest in the Alps if $R_{n}=200 \mathrm{Wm}^{-2}$; G and H are negligible, and the temperature is approximately constant.

Results:
Daily evapotranspiration: mm

Problem 10

The mean annual precipitation over a $150 \mathrm{~km}^{2}$ wide catchment is 1300 mm . The potential evapotranspiration loss is 550 mm whereas the real evapotranspiration loss is 300 mm . Plot the catchment on the Budyko diagram and describe the expected vegetation.

Results:
Plot (drawing)
Vegetation:

