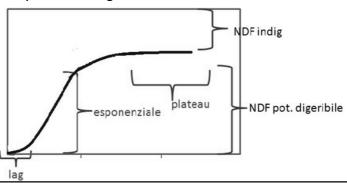
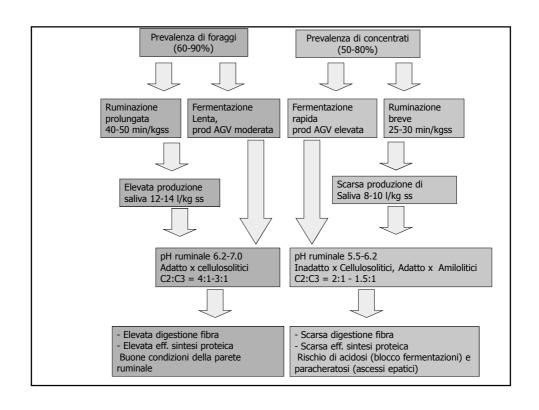
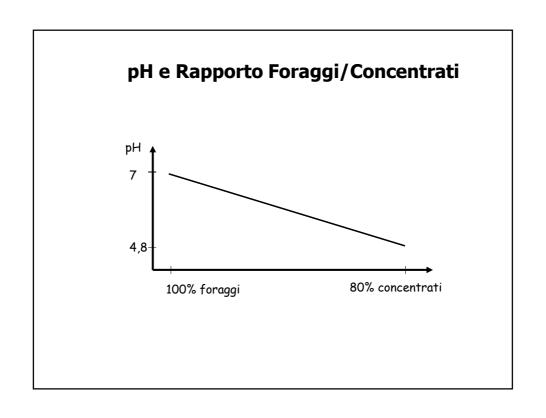

Ottimizzazione delle fermentazioni ruminali

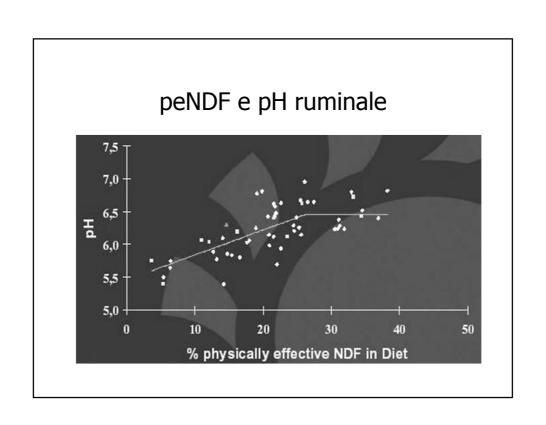
Digestione ruminale della fibra

L'ottimizzazione della digestione della fibra nei ruminanti inizia dal substrato


I batteri "fibrolitici" hanno infatti necessità di:


- entrare nella matrice fibrosa (azione coadiuvata dai funghi).
- un ambiente ruminale stabile (pH adeguato).




Digestione ruminale della fibra

- Lag time: tempo di latenza necessario ai batteri fibrolitici per "l'organizzazione dell'attacco della fibra"
- Andamento esponenziale: la frazione NDF potenzialmente deradabile subisce un attacco all'inizio molto rapido, poi più lento
- Fase asintotica: che corrisponde al massimo valore di degradazione e la componente indigeribile

NDF fisicamente effettiva (peNDF)

- è la fibra che determina la risposta dell'animale in termini di attività di masticazione
- peNDF = pef X NDF
- il fattore di efficienza fisica (pef) può variare:
 - da 0 quando l'NDF dell'alimento non stimola la masticazione
 - a 1.0 quando l'NDF dell'alimento promuove la massima attività di masticazione
- poiché pef è legato alle dimensioni delle particelle e alla riduzione delle dimensioni delle particelle (che è direttamente legata alla attività di masticazione), la peNDF influenzerà la stratificazione del contenuto ruminale (importante nel trattenere le particelle grosse, nella stimolazione della motilità, nella dinamica di fermentazione e transito

Valori di pef per kg di NDF in foraggi diversi e in diverse forme fisiche

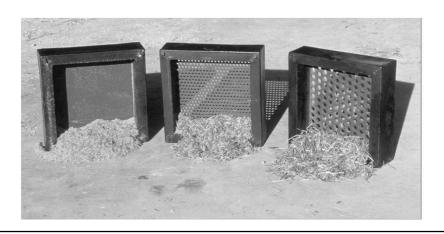
Classe	Lunghezza cm	Erba	Insilato d'erba	Insilato mais	Fieno medica	Insilato medica
Lungo		1.00				
Trinciato	4.8-8	0.95	0.95		0.90	
Med-Trinc.	2-4.8	0.90	0.90	0.90		0.85
Medio	1.2-2		0.85	0.85	0.85	0.80
Med-fine	0.5-1.2			0.80	0.80	
Fine	0.3-0.5				0.70	0.70
Macinato g	. 0.15-0.25	0.40			0.40	
Macinato f.	0.15-0.25	0.30			0.30	

Stima della peNDF usando i valori tabulati di pef

- Determinare il contenuto di NDF (es. 40%)
- Valutare la fonte alimentare (es. fieno di medica) e stabilire la forma fisica (es. medfine)
- Desumere la pef appropriata dalla tabella dei valori stimati su base biologica (0.80)
- Calcolare la peNDF = NDF X pef
 - $peNDF = 40 \times 0.80 = 32\%$

Stima della pef usando metodi fisici di frazionamento delle particelle

- Mertens (1986, 1997) propose un metodo di laboratorio molto semplice per misurare la peNDF
 - Misurare la proporzione di s.s. trattenuta dalle maglie di un setaccio di 1.18-mm di diametro dei fori come stima della pef
 - peNDF = NDF (%) X (frazione della razione > 1.18-mm diametro)

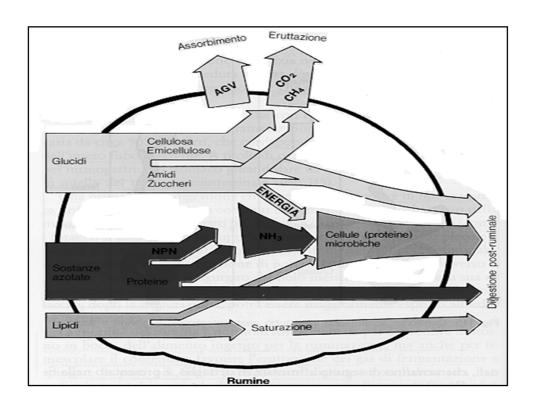


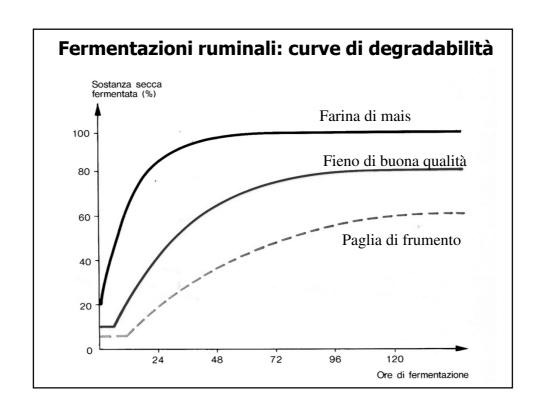
Stima della pef usando un setacciatore verticale della sostanza secca

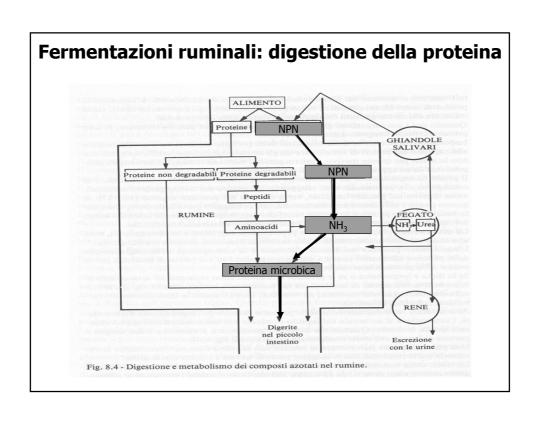
Alimento	pef	SS trattenuta da 1.18 mm	X NDF	= peNDF
Fieno, lungo	1.00	0.98	65	63.7
Fieno di legum., lungo	0.95	0.92	50	46.0
Insilato di leg., trinc.	0.85	0.82	50	41.0
Legume sil., fino	0.70	0.67	50	33.5
Silomais	0.85	0.81	51	41.5
Trebbie di birra	0.40	0.18	46	8.3
Mais, farina	0.40	0.48	9	4.3
F.e. soia	0.40	0.23	14	3.2
Baccelli di soia	0.40	0.03	67	2.0

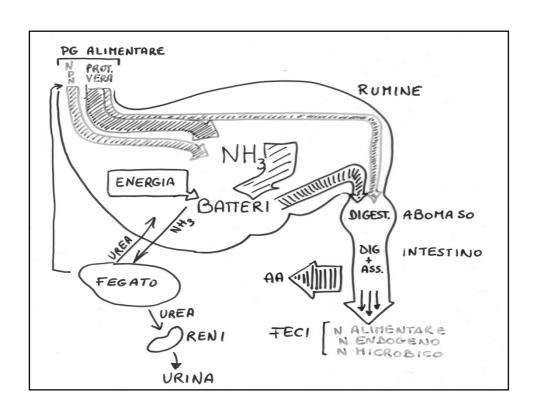
QUALITA' E STRUTTURA DELLA FIBRA

Setacciatore particellare (Penn State University) per la valutazione aziendale delle dimensioni dei foraggi e dell'unifeed

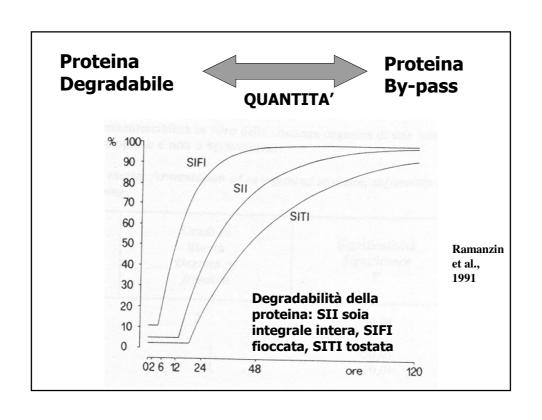



QUALITA' E STRUTTURA DELLA FIBRA: distribuzione delle particelle


FIBRA EFFETTIVA (Mertens, 1997)


DISTRIBUZIONE OTTIMALE DELL'UNIFEED NELLE DIVERSE FRAZIONI

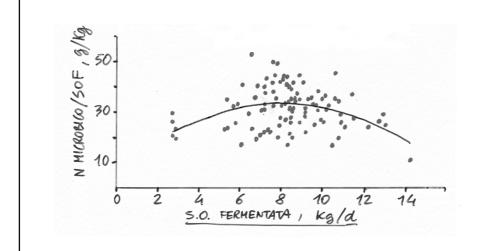
- 1° crivello (Ø fori: 19.0 mm) → 6-10% - 2° crivello (Ø fori: 8.0 mm) → 30-50% - fondo → 40-60%



Proteina Degradabile	QUANTITA' Proteina By-pass
Alimento	Degradabilità proteina (%)
Foraggi verdi e insila	ti 70-80
Farina di avena	78
Farina di frumento	74
Farina di mais	42
Farina di orzo	74
Crusca di frumento	76
Glutine di mais	27
Trebbie di birra	45
Polpe di bietola	48

Proteina Degradabile	QUANTIT	Proteina By-pass
Alimento	Degradabilità p	roteina (%)
Farina di estraz	73	
Farina di estraz	62	
Farina di estraz	77	
Panello di lino	62	
Granelle macina	90	
Granella di soia	49	
Farina di medic	60	
Farina di pesce	45	
Farina di carne		50

Proteina Degradabile



Proteina By-pass

- efficienza di incorporazione dell'azoto nella sintesi microbica
- sintesi di proteina microbica per unità di energia
- riciclo dell'urea
- digeribilità intestinale della proteina microbica
- valore biologico della proteina microbica

- digeribilità intestinale della proteina alimentare bypassata
- valore biologico della proteina alimentare bypassata

Contributo della proteina microbica sul fabbisogno totale proteico in relazione alla efficienza di sintesi microbica (Stern, 1994)

Efficienza microbica (g di N per kg	Produzione di latte			
di SO fermentata)	25 kg/d	35 kg/d	45 kg/d	
20 g/kg	49 %	42 %	39 %	
30 g/kg	73 %	64 %	59 %	
40 g/kg	98 %	85 %	79 %	

Utilizzazione della proteina nei ruminanti

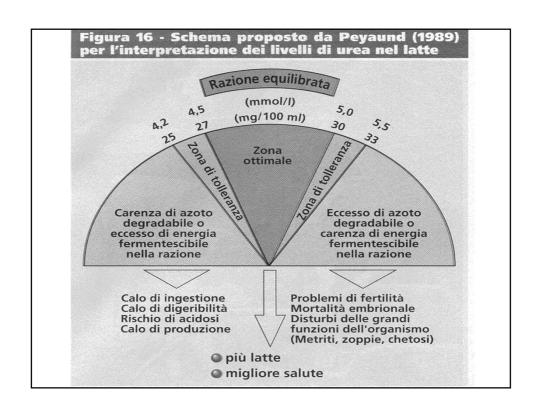
COMPOSIZIONE AMINOACIDICA (%) DELLE PROTEINE DEL LATTE E DEI MICROBI RUMINALI

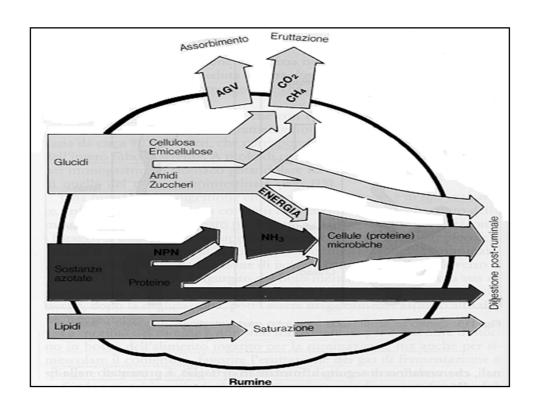
	LATTE	BATTERI	PROTOZOI	MICROBI	
LISINA	8,1	9,3	9,9	9,4	
TREONINA	4,6	5,5	4,9	5,4	
VALINA	6,6	6,6	5,3	6,3	
METIONINA	2,6	2,6	2,1	2.5	
ISOLEUCINA	5,9	6,4	7,0	6,5	
LEUCINA	9,7	7,3	8,2	7,5	

Concentrazione NH₃ bassa: < 50 mg/l (con diete ipoproteiche e/o a bassa degradabilità della proteina) Concentrazione NH₃ elevata (con diete iperproteiche e/o a alta degradabilità della proteina) Accumulo NH₃ nel liquido ruminale Trasferimento al

fegato

in UREA


Trasformazione


Quale è il livello ottimale di NH₃ nel rumine?

85 mg/l -----300 mg/l

Quale è il livello ottimale di urea nel plasma e nel latte ?

		Lattazione	
	Asciutta	Media produzione	Alta produzione
Plasma (mmol/l)	2.8-4.3	4.0-5.5	4.5-6.0
Latte (mmol/l)		3.8-5.3	4.3-5.8

Fermentazioni ruminali: digestione dei lipidi

Trigliceridi → lipasi → acidi grassi + glicerolo (batteriche)

Acidi grassi insaturi → idrogenati (es. acido linolenico → acido stearico)

Acidi grassi forme cis → trans (vedi CLA)

NB! L'attività dei microrganismi ruminali può essere notevolmente depressa quando si utilizzano diete ad elevato contenuto di lipidi (> 6-8%)

sensibili soprattutto i cellulosolitici

Fermentazioni ruminali: digestione dei lipidi

IMPIEGO DI LIPIDI PROTETTI

- Saponificazione
- Rivestimento con membrana proteica trattata con formaldeide