Learning objectives:

1. Biodiversity

2. Invasive species

3. Structure of forest insect communities and ecological
guilds

4. Population dynamics of forest insect pests

5. How forest insects respond to abiotic drivers

6. How forest insects respond to biotic drivers: plant quality
7. How forest insects respond to biotic drivers: competition
8. How forest insects respond to biotic drivers: natural
enemies

9. Ecological management of insect pest populations

Insect outbreaks chapter 6 (spatial synchrony)
Insect outbreaks chapter 7 (tree rings)



Outbreaks of forest insects and population dynamics
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Outbreak types: gradients, cycles, eruptions
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FIG. 1.2. Three major patterns of the population dynamics of forest insects (a)

gradients (b) cycles, and (c¢) eruptions (D = disturbance in environmental condi-

tions, R =return to normality, T = periodicity of population cycle) (see text)
(from Berryman and Stark 1985).



Study of population dynamics

. Construct a model of intergeneration change

. Develop a sampling program and estimate number of
individuals passing through each stage in life cycle

. Construct a life table, calculate and interpret birth
and death rates

. Compare k-factor analysis as ways to discover factors
causing population change

. Distinguish major mortality factors, key factors

. Distinguish direct density dependence, inverse density
dependence, delayed density dependence, density
independence

. Critically evaluate methods for assessing role of
density-dependent and density-independent factors in
population dynamics
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Classical Approach: Key Factor Analysis

Study life history and develop methods of census
for each stage

Construct a life table that is as complete as possible
Accumulate many life tables
Plot generation curves and mortalities

Assess the key-factors which make the biggest
contribution to change in generation mortality

Determine the relationship of component mortalities
to density

Follow up with intensive studies of key factors
Make predictions using the model



Study life history and develop methods of census for
each stage

1. Life History
Adult emergence
Oviposition
Larvae and Pupae

2. Sampling decisions
«  Subdivision of the habitat
«  Selection of the sampling unit
. Number of samples
. Placement of samples
«  Timing of sampling



Construct a life table that is as complete as
possible

1. Designate stage intervals — how?

2. Estimate mortality assuming factors act sequentially, not
simultaneously — what are the implications?

3. Estimate k-values as difference between logarithms of
the population before and after mortality acts




Concept Alert!

Major mortality factor — makes a large contribution to
mortality within a generation (large k)

Key factors contribute to changes in abundance
between generations (component k most correlated
with generation K,

Density-regulating factors are those k-values that
Increase with density of the stage on which they act.

Population regulation. A regulated population is one
that tends to return to equilibrium density or cycle
when perturbed from this level or cycle. Precise DD
requires that DD factors not be too strong or too
weak.
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Case study
Winter Moth
Operophtera brumata
Geometridae




Operophtera brumata
the winter moth

Univoltine -one generation per year
Female flightless

Cyclic dynamics: 9-10 years between population
peaks. Parasitoids important factor for cycles.

Main host species: Quercus robur- Pedunculate
Oak native to large parts of Europe. Birch-
Betula sp. In northern Europe.

Other host tree species: mountain ash, fruit trees
(mostly Rosacea) and other.



Winter moth life table of Varley and Gradwell 1970
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Plot k against time and density
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Plot k against time and density: delayed dd and anti-
clockwise direction
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Fig.5.14 Time series plot of pupal predation of the winter moth,
the spiral form suggesting a delayed density-dependent
component to this mortality. (Source as Fig. 5.12.)



The special case of population cycles

« Larch bud moth Zeiraphera diniana
« Gypsy moth Lymantria dispar

« Winter moth Operophtera brumata
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F1G. 1.3. Fluctuation in numbers of larvae of Zeiraphera diniana on larch at Sils in
the Engadine Valley, Switzerland. Dotted line is the defoliation threshold (from
Baltensweiler 1984).

Special Edition: Obituary Werner Baltensweiler, 1926-2008

Werner Baltensweiler measuring larch needle length near Zuoz. S:.vitzerland, September, 2002
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DYNAMICAL EFFECTS OF PLANT QUALITY AND PARASITISM ON

POPULATION CYCLES OF LARCH BUDMOTH
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Geographic variation in North American gypsy moth cycles:
subharmonics, generalist predators, and spatial coupling
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Fig. 2. An example of fluctuations of gypsy moth abundance (in arbitrary units) predicted by the stochastic model with
associated mortality rates due to predators and pathogens when predator carrying capacity K= 5, and predator growth rate is log-
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A) 0% viral prevalence B) 90% viral prevalence
K=2
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Fig. 3. Effects of predator abundance on low-density populations of gypsy moth, when (A) no host is infected with virus, and
when (B) 90% of larvae are infected with virus. The solid black line refers to K (carrying capacity) = 20, the solid gray line refers to
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Allee effect Liebhold and Tobin Ann Rev
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Exploiting Allee effects for managing biological invasions
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Abstract

Biological invasions are a global and increasing threat to the function and diversity of ecosystems. Allee effects
(positive density dependence) have been shown to play an important role in the establishment and spread of
non-native species. Although Allee effects can be considered a bane in conservation efforts, they can be a
benefit in attempts to manage non-native species. Many biological invaders are subject to some form of an
Allee effect, whether due to a need to locate mates, cooperatively feed or reproduce or avoid becoming a meal,
yet attempts to highlight the specific exploitation of Allee effects in biological invasions are surprisingly
unprecedented. In this review, we highlight current strategies that effectively exploit an Allee effect, and
propose novel means by which Allee effects can be manipulated to the detriment of biological invaders.
We also illustrate how the concept of Allee effects can be integral in risk assessments and in the prioritization of
resources allocated to manage non-native species, as some species beset by strong Allee effects could be less
successful as invaders. We describe how tactics that strengthen an existing Allee effect or create new ones could
be used to manage biological invasions more effectively.
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Winter moth defoliation at Lapporten-Lappland Photo S. Hornell




Reported Outbreak localities 1948-2008
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Distribution range of Operophtera brumata
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Methods

* The perpendicular great circles that intersect at
Greenwich on the GR80-ellipsoid were rotated
18° from the true north so the N-S oriented great

circle became ~parallel to the Scandes and the
North Atlantic coast.
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Distance (km) from the western base-line

2000: y=-0.002731x+2006.7:
R2=0.781 p<0.001

1990 y=-0.004799x+1999.2;
R2=0.803; p<0.001

1980: y=-0.004032x+1987.7:
=0.612; p<0.001

1870: y=-0.003540x+1977.4;
R2=0.718; p<0.001

1860: y=-0.002000x+1965.5;
R?=0.791; p<0.001

1950: y=-0.003255x+1957.3;
R?=0.716; p<0.001



Year in decennium
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2000 f(x) =-6.181705E-4"x + 2.004490E4+3
RA2 = 7 B65144E-2; p=0.26

1990: f(x) = 1.741942E-3%x + 1.9942098E+3
R*2 = 2.375048E-1; p=0.018

1980: f(x) = -1.568720E-3"x + 1.986094E+2
R*2 = 1.263348E-1; p=0.15

1970: f(x) = -7.250959E-4"x + 1.975476E+2
R*2 =2 779776E-2; p=0.50

1960: f(x) = 9.034942E-4"x + 1.963251E+3
R*2 = 2 446256E-1; p=0.037

1950 f(x) = -5.722624E-4"x + 1.956052E+3
R*2 = 3.022850E-2; p=0.59
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Why lagged synchrony and
waves”?

Reaction-diffusion models:

* frophic interactions - Dispersal prey or
natural enemies or plant-herbivore
Interactions.

* Boundaries with hostile environment:
a) Eastern climatic boundary
b) Eastern limit of regular oak distribution



Population growth model
applicable with long data sets

R=In(N,/N,,)

where N, =

Number of individuals per unit area in year t
Number of infested trees per unit area in year t
attacked area of year t



Long-term survey of Thaumetopoea pityocampa
population dynamics in the Italian Alps

Objectives

Identify endogenous and exogenous factors driving the population
dynamics in Trentino Alto Adige, a mountain area where the pest is present
since many years.

1. Assemble survey data
2. Apply a population model
3. Test climatic factors

Orange to
green: 90
to 1450 m
of altitude




Materials and methods

Two unpublished time-series of attacked area surveys: twenty years in
Trentino (from 1990 to 2009) and thirty-seven in Alto Adige (from 1975
to 2011).

Altitude span: 91 — 1450 m

Host species: Pinus sylvestris and Pinus nigra

Host area: 20,740 ha (Trentino), 24,864 (Alto Adige)
Climate: T-Winter min t-1, T-Summer, R-Spring, R-Autumn
Model

Population growth rate as per capita rate of increase

R = In(N/N.,) (where N= attacked area of year t)

R,= f(N.,) + € with € representing sampling error plus exogenous (i.e.
density independent) effects
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Trentino BEST MODEL :

explained

Density N t-1

Autumnal Rainfall

Min Winter Temperature t-1

51% of variance

Results 2
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Alto Adige BEST MODEL

explained

Density N t-1

Summer Temperature
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Results 3

27% of variance

R2=0.2043

1 R2 = 0.0723
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Results 4
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Comparison with other historical series: Mont
Ventoux 1959-1982 (Geri 1983)

No. of nests per

tree
O R, N WA U O N

1956 1958 1960 1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 1982 1984

Avallablility of other historical series?
Standardization of the data needed.



Preliminary conclusions

« Consistency of the pattern between Trentino and Alto
Adige

* Density in the previous year as main driving factor of the
population dynamics - emphasis on the regulation by
the host plant (food quantity and quality)

« Delayed density-dependence by natural enemies not
significant in the area

« Climatic factors important at local scale



