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Recent distributional changes have been 

documented for plants, migratory birds, and 

temperate-zone butterflies (Parmesan et al. 1999, 

Walther et al. 2002, Parmesan and Yohe 2003). 

However, a causal relationship between climatic 

factors and species range limits is often difficult 

to determine.  

Insects are suitable test organisms because they 

are very sensitive to temperature. 

Insects developing through the winter may 

respond to shifts in winter temperature, which 

have increased more than summer temperatures. 



The winter pine processionary moth, Thaumetopoea 

pityocampa, provides a good example because: 

• is active in the winter (usually Sep to May),  

• is capable of feeding at temperature around 0°C, 

• is expanding the range in the last decades 

(Goussard et al., 1999). 

Démolin (1969) defined the minimum 

thermal/climatic requirements of the processionary 

moth: 

mean minimum T of January above –4°C,  

Lower Lethal Threshold –16°C 

annual solar radiation, minimum of 1800 hours 



In this study, we sought a mechanistic understanding 

of the range expansion in T. pityocampa.  

We explored natural temperature gradients 

(latitude and altitude) as spatial analogues for 

climate change by rearing cohorts of larvae in 

three zones along each gradient:  

• the core zone (where the moth has been present 

for over 30 years),  

• the expansion zone (where recent colonization 

has occurred), 

• the external zone (outside its 2003 distribution)  



We tested a mechanistic model for winter feeding 

that was developed from laboratory data.  

The model is based on the combined effect of 

daytime nest temperature, which induces feeding, 

and minimum temperature for night feeding. 
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Hourly records of air 

and nest temperature 

Data on incoming solar 

radiation (insolation) 



Laboratory experiment in rearing chambers: 

• short-day photoperiod (8 L:16 D, light from 8 am to 4 

pm)  

• constant night temperatures of either +3°C and –3°C 

• four temperature regimes for the light phase: +3, +6, 

+9 and +12°C  
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Cold period: between the first and the last week with 

daily T minimum mean < 0°C 

Paris Basin: January – February 

Venosta: December - February 

Thresholds 

• Daily nest temperature, responsible for inducing 

subsequent night feeding,  

 “Activation Temperature” AT > 9°C 

 

• Night air temperature, allowing larval feeding,  

 “Potential Feeding Temperature” PFT > 0°C 

Model definition 



When AT > 9°C for at least one hour during the day 

and 

PFT is satisfied for a given number of hours during the 

night (number of hours with T > 0°C) 

we achieve the “Realized Feeding Threshold” (RFT), 

representing the number of hours during which feeding 

may have occurred. 

 

RFT can be calculated also as a number of days. 
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Model testing: performance – Paris Basin 



Model testing: performance – Venosta/Vinschgau 
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South core 
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32 a 
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Model testing: predicted feeding – Paris Basin 

Cold period: 58 days (1 Jan – 27 Feb) 
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Model testing: predicted feeding – Venosta/Vinschgau 

Cold period: 91 days (3 Dec – 4 Mar) 
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Model testing: predicted feeding vs. performance 

RFT was standardized for the two regions by dividing the 

total RFT by the months of the respective cold period and 

regressed against % colony survival. 
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Conclusions 

• Survival is possible because winter feeding. More 

frequent feeding and, in turn, shorter starvation 

periods, accelerate development and enhance survival 

in areas with previously prohibitive climatic conditions.  

• The magnitude of expansion in T. pityocampa is      

consistent with, or exceeds, the general predictions of 

responses to climate change (Parmesan et al. 1999, Hill et 

al. 2002, Walther et al. 2002, Parmesan and Yohe 2003).   

• Given that a shift in one degree of latitude roughly 

corresponds to a rise of 122 m in altitude (Hopkins 1938), 

the estimate of latitudinal expansion (27 km/decade) is 

consistent with that of altitudinal expansion on the north 

slope (29 m/decade). 



• In spite of all the unpredictable facts affecting survival 

(e.g. LLT), but buffered by extended diapause, it is 

reasonable to assume that the geographic range of T. 

pityocampa will continue to expand in response to 

increasing mean temperatures. 

• Insufficient insolation may limit the northward 

expansion; areas approximately two degrees farther 

north (about 220 km) of upper latitude edge cannot 

support winter feeding.  

• Insolation is less important than night temperature as 

a limiting factor for the expansion on southern slopes 

of mountains.  



• Climate-based models that combine mean day and 

night temperatures, probability of LLT, and insolation, 

are likely to provide the best predictive power in range 

dynamics of T. pityocampa. 

Poster of Pennerstorfer et al., Modelling the range 

expansion of the Pine Processionary Moth 

(Thaumetopoea pityocampa) in complex alpine terrain.  



Upper Venosta/Vischgau valley 


